

# Answer Set Automata: A Learnable Pattern Specification Framework for Complex Event Recognition

<u>Nikos Katzouris</u>, George Paliouras NCSR "Demokritos"

TIME 2023

1

## **Complex Event Recognition & Forecasting (CER/F)**





- Recognition:
  - Matches of the patterns on the input.
- Forecasting:
  - Likelihood of future full pattern matches, given observed partial matches.

## Complex Event Recognition & Forecasting (CER/F)





#### • Recognition:

- Matches of the patterns on the input.
- Forecasting:

complex event (CE) :=

 Likelihood of future full pattern matches, given observed partial matches.

### **Complex event patterns:**

- Typically manually authored, specifying situations interest.
- Using Event Specification Languages (ESLs).
- Declarative.
- Formal, compositional semantics.

|base case |apply predicate p on the variables of CE|sequence |Kleene Closure |disjunction |conjunction (:= SEQ( $CE_1$ ,  $CE_2$ ) OR SEQ( $CE_2$ ,  $CE_1$ )) |windowing |event selection strategies (strict-contiguity, skip-till-next-match...)

## Complex Event Recognition & Forecasting (CER/F)





#### **Recognition:**

- Matches of the patterns on the input. Ο
- Forecasting: •

input event

ITER(CE)

 $FILTER_p(CE)$ 

CE1 OR CE2

 $CE_1$  AND  $CE_2$ 

WITHIN<sup> $t_2$ </sup> (*CE*)

SELECT(CE)

Likelihood of future full pattern matches, given Ο observed partial matches.

#### **Complex event patterns:**

- Often unknown, or change over time.
- Can we learn/revise them from data?

complex event (CE) :=

base case apply predicate p on the variables of CE $SEQ(CE_1, CE_2)$ sequence Kleene Closure disjunction |conjunction (:=  $SEQ(CE_1, CE_2)$  OR  $SEQ(CE_2, CE_1)$ ) windowing event selection strategies (strict-contiguity, skip-till-next-match...)

## Example

### EVANFL

## Domain: simulation of tumor evolution in response to a drug



### **Complex Event Pattern**

| PATTERN | $SEQ(ITER(X_t), ITER(Y_t), ITER(Z_t))$  |
|---------|-----------------------------------------|
| FILTER  | $X_t$ .alive $< X_{t-1}$ .alive         |
| AND     | $X_t$ .apoptotic > $X_{t-1}$ .apoptotic |
| AND     | $Y_t$ .alive $< 800$                    |
| AND     | $Z_t$ .alive $< Z_t$ .necrotic          |

| complex event $(CE) :=$ | input event                               | base case                                                            |
|-------------------------|-------------------------------------------|----------------------------------------------------------------------|
|                         | $FILTER_p(CE)$                            | apply predicate $p$ on the variables of $CE$                         |
|                         | $SEQ(CE_1, CE_2)$                         | sequence                                                             |
|                         | ITER(CE)                                  | Kleene Closure                                                       |
|                         | CE1 OR CE2                                | disjunction                                                          |
|                         | $\widetilde{CE_1}$ AND $\widetilde{CE_2}$ | conjunction (:= SEQ( $CE_1$ , $CE_2$ ) OR SEQ( $CE_2$ , $CE_1$ ))    |
|                         | WITHIN $_{t_1}^{t_2}(CE)$                 | windowing                                                            |
|                         | SELECT $(CE)$                             | levent selection strategies (strict-contiguity, skip-till-next-match |

## **Event Specification Languages & Automata**

### EVANFL

## Domain: simulation of tumor evolution in response to a drug



### **Complex Event Pattern**



- Patterns usually express "episodes" and correspond to symbolic automata (SFA).
- SFA: transition guards are predicates, rather than symbols.

## **Event Specification Languages & Automata**

### EVANFLIGHT

## Domain: simulation of tumor evolution in response to a drug



## Patterns of interesting situations

| PATTERN               | $SEQ(ITER(X_t), ITER(Y_t))$           | ), ITER $(Z_t)$ ) |
|-----------------------|---------------------------------------|-------------------|
| FILTER                | $X_t$ .alive $< X_{t-1}$ .alive       | 9                 |
| AND                   | $X_t$ .apoptotic > $X_{t-1}$ .a       | apoptotic         |
| AND                   | $Y_t$ .alive < 800                    |                   |
| AND                   | $Z_t$ .alive < $Z_t$ .necrotic        |                   |
|                       |                                       |                   |
| a                     | ny p <sub>1</sub> p                   | 2 P3              |
| (                     | $\mathcal{L}$                         | ) Q               |
| 1                     | ) p1 / p2                             | 7 p3              |
| start $\rightarrow$   |                                       | 2 ) ( 3           |
|                       |                                       |                   |
| $p_1(T) \leftarrow q$ | ecrease(alive(T)), increase(alive(T)) | a poptotic(T)).   |
| $p_2(T) \leftarrow I$ | $ess_than_val(alive(T), 800)$         |                   |
| $p_3(T) \leftarrow 1$ | $ess_than_att(alive(T), necro$        | tic(T)).          |

- Patterns usually express "episodes" and correspond to symbolic automata (SFA).
- SFA: transition guards are predicates, rather than symbols.

## **Event Specification Languages & Automata**

### EVANFLIGHT

## Domain: simulation of tumor evolution in response to a drug



## Patterns of interesting situations

| PATTERN             | SEQ(IT                          | $ER(X_t), ITE$           | $R(Y_t), ITER$ | $(Z_t))$          |  |  |
|---------------------|---------------------------------|--------------------------|----------------|-------------------|--|--|
| FILTER              | $X_t$ .alive $< X_{t-1}$ .alive |                          |                |                   |  |  |
| AND                 | $X_t$ .apop                     | ptotic $> X_i$           | _ 1 .apoptot:  | ic                |  |  |
| AND                 | Yt.ali                          | ve < 800                 |                |                   |  |  |
| AND                 | $Z_t$ .aliv                     | $re < Z_t$ .nec          | rotic          |                   |  |  |
|                     |                                 |                          |                |                   |  |  |
|                     | any                             | $p_1$                    | $p_2$          | $p_{\mathcal{S}}$ |  |  |
|                     | $\cap$                          | $\cap$                   | $\cap$         | $\cap$            |  |  |
|                     | LX                              | 1×                       | 1×             | 1×                |  |  |
| start -             | $p \right)^{p_1}$               |                          |                | 3                 |  |  |
| Start (             | °)                              | $\left( 1 \right)$       | ~_/            | l                 |  |  |
| (                   | · · · ·                         | · · · · · ·              | <u> </u>       | . (               |  |  |
| $p_1(T) \leftarrow$ | decrease( al                    | ive(T), inc              | rease(apoptot  | ic(T)).           |  |  |
| $p_2(T) \leftarrow$ | less_than_va                    | al(alive(T),             | 800).          |                   |  |  |
| $p_3(T) \leftarrow$ | less_than_at                    | $\mathfrak{l}(anve(T)),$ | necrotic(T)    | ).                |  |  |

- Patterns usually express "episodes" and correspond to symbolic automata (SFA).
- SFA: transition guards are predicates, rather than symbols.

## **Approach to Event Pattern Learning**

### EVANEL



Complex event pattern learning

### **Patterns of interesting**

#### situations

$$\begin{split} & \mathsf{SEQ}(\mathsf{ITER}(X_t),\mathsf{ITER}(Y_t),\mathsf{ITER}(Z_t)) \\ & X_t.\texttt{alive} < X_{t-1}.\texttt{alive} \\ & X_t.\texttt{apoptotic} > X_{t-1}.\texttt{apoptotic} \\ & Y_t.\texttt{alive} < 800 \\ & Z_t.\texttt{alive} < Z_t.\texttt{necrotic} \end{split}$$



- Approach:
  - Learn symbolic automata that correspond to patterns in an event specification language.

PATTERN

FILTER

AND

AND

AND

- Requirements:
  - Simultaneously learn the SFA structure and the guards' definitions.

### EVANFL



...

. . .

**SFA structural specification** transition(0, any, 0). transition(0,  $p_1$ , 1). transition(1,  $p_1$ , 1). transition(1,  $p_2$ , 2). transition(2,  $p_2$ , 2). transition(2,  $p_3$ , 3).

#### Transition guards definitions

 $\begin{array}{l} \mathsf{holds}(p_1,S_{id},T) \leftarrow \mathsf{holds}(\mathsf{decrease}(alive),S_{id},T), \mathsf{holds}(\mathsf{increase}(apoptotic),S_{id},T).\\ \mathsf{holds}(p_2,S_{id},T) \leftarrow \mathsf{holds}(\mathsf{less\_than\_val}(alive,800),S_{id},T). \end{array}$ 

### EVANFL



### EVANFL



. . .

transition $(1, p_2, 2)$ . transition $(2, p_2, 2)$ . transition $(2, p_3, 3)$ .

#### Transition guards definitions

 $\begin{aligned} \mathsf{holds}(p_1, S_{id}, T) &\leftarrow \mathsf{holds}(\mathsf{decrease}(alive), S_{id}, T), \mathsf{holds}(\mathsf{increase}(apoptotic), S_{id}, T). \\ \mathsf{holds}(p_2, S_{id}, T) &\leftarrow \mathsf{holds}(\mathsf{less\_than\_val}(alive, 800), S_{id}, T). \end{aligned}$ 

### EVANEI 🗞 📈



 $holds(decrease(Attribute), S_{id}, T) \leftarrow [conditions]$ holds(increase(Attribute),  $S_{id}, T$ )  $\leftarrow$  [conditions] . . .

#### SFA structural specification

transition(0, any, 0). transition $(0, p_1, 1)$ . transition $(1, p_1, 1)$ . transition  $(1, p_2, 2)$ . transition  $(2, p_2, 2)$ . transition  $(2, p_3, 3)$ .

#### Transition guards definitions

. . .

 $holds(p_1, S_{id}, T) \leftarrow holds(decrease(alive), S_{id}, T), holds(increase(apoptotic), S_{id}, T).$  $\mathsf{holds}(p_2, S_{id}, T) \leftarrow \mathsf{holds}(\mathsf{less\_than\_val}(alive, 800), S_{id}, T).$ 





Algorithm 1 ASAL(n, m, t, DSFA, ESS, I, B, S)

**Input:** n: max number of states ; m: max number of alternative (disjunctive) definitions for a guard; t: solving time limit; DSFA: boolean flag for (n-)deterministic SFA; ESS: event selection strategy;  $\mathcal{I}$ : SFA interpreter;  $\mathcal{B}$ : BK predicate definitions;  $\mathcal{S}$ : labeled training set.

**Output:** T: structural SFA specification of up to n states; G: transition guard definitions

```
1: \mathcal{E} \leftarrow \mathsf{guard\_template}(n, DSFA, ESS).
 2: \mathcal{P}_1 \leftarrow \text{generate}_{\text{part}}(n, m, \mathcal{B}).
 3: \mathcal{P}_2 \leftarrow \mathsf{test\_part}(\mathcal{B}).
 4: \mathcal{M} \leftarrow \mathsf{solve}(t, \mathcal{E}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{I}, \mathcal{B}, \mathcal{S}).
 5: (\mathcal{T}, \mathcal{G}) \leftarrow \mathsf{assemble}(\mathcal{M}, \mathcal{E}).
 6: return (\mathcal{T}, \mathcal{G}).
 7: function assemble(\mathcal{M}, \mathcal{E}):
         \mathcal{T} \leftarrow \text{all transition}/3 \text{ facts in } \mathcal{M}
 8:
 9:
       \mathcal{G} \leftarrow \emptyset
          for each atom \alpha \in \mathcal{M} of the form \alpha := \operatorname{atom}(i, j, \delta):
10:
11:
              g_{ij} \leftarrow the j-th disjunct of guard i's definition
12:
              if no such q_{ij} exists in \mathcal{G}:
13:
                   \mathcal{G} \leftarrow \mathcal{G} \cup \mathsf{holds}(g_{ij}, S, T) \leftarrow
                                                                                    # adds empty-bodied rule
14:
              else add \delta to the body of g_{ij}
15:
          for each rule g_{ij} \in \mathcal{G}
16:
              add to q_{ij}'s body its corresponding mutual exclusivity conditions
              specified in \mathcal{E}.
17:
          return (\mathcal{T}, \mathcal{G})
```

### EVANEL

### EVANEL



**Input:** n: max number of states ; m: max number of alternative (disjunctive) definitions for a guard; t: solving time limit; DSFA: boolean flag for (n-)deterministic SFA; ESS: event selection strategy;  $\mathcal{I}$ : SFA interpreter;  $\mathcal{B}$ : BK predicate definitions;  $\mathcal{S}$ : labeled training set.

**Output:** T: structural SFA specification of up to n states; G: transition guard definitions

```
1: \mathcal{E} \leftarrow \text{guard\_template}(n, DSFA, ESS).

2: \mathcal{P}_1 \leftarrow \text{generate\_part}(n, m, \mathcal{B}).

3: \mathcal{P}_2 \leftarrow \text{test part}(\mathcal{B}).
```

```
4: \mathcal{M} \leftarrow \text{solve}(t, \mathcal{E}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{I}, \mathcal{B}, \mathcal{S}).
```

```
4. \mathcal{M} \leftarrow \text{solve}(\iota, c, \mathcal{P}_1, \mathcal{P}_2, \iota, b, 5; (\mathcal{T}, \mathcal{C}))
```

- 5:  $(\mathcal{T}, \mathcal{G}) \leftarrow \operatorname{assemble}(\mathcal{M}, \mathcal{E}).$
- 6: return  $(\mathcal{T}, \mathcal{G})$ .

```
7: function assemble(\mathcal{M}, \mathcal{E}):
```

```
8: \mathcal{T} \leftarrow \text{all transition}/3 \text{ facts in } \mathcal{M}
```

```
9: \mathcal{G} \leftarrow \emptyset
```

```
10: for each atom \alpha \in \mathcal{M} of the form \alpha := \operatorname{atom}(i, j, \delta):
```

- 11:  $g_{ij} \leftarrow \text{the } j\text{-th disjunct of guard } i$ 's definition
- 12: **if** no such  $g_{ij}$  exists in  $\mathcal{G}$ :
- 13:  $\mathcal{G} \leftarrow \mathcal{G} \cup \mathsf{holds}(g_{ij}, S, T) \leftarrow \# adds empty-bodied rule$
- 14: else add  $\delta$  to the body of  $g_{ij}$
- 15: for each rule  $g_{ij} \in \mathcal{G}$
- 16: add to  $g_{ij}$ 's body its corresponding mutual exclusivity conditions specified in  $\mathcal{E}$ .
- 17: return  $(\mathcal{T}, \mathcal{G})$





obs $(s_1, av(al, 200), 0), \dots, obs(s_1, av(al, 83), 50)$ obs $(s_1, av(ap, 40), 0), \dots, obs(s_1, av(ap, 5), 50)$ obs $(s_1, av(n, 0), 0), \dots, obs(s_1, av(n, 800), 50)$ class $(s_1, positive)$ 

 $class(s_{10}, negative)$ 

EVANEI SAM

Algorithm 1 ASAL(n, m, t, DSFA, ESS, I, B, S)

**Input:** n: max number of states ; m: max number of alternative (disjunctive) definitions for a guard; t: solving time limit; DSFA: boolean flag for (n-)deterministic SFA; ESS: event selection strategy;  $\mathcal{I}$ : SFA interpreter;  $\mathcal{B}$ : BK predicate definitions;  $\mathcal{S}$ : labeled training set.

**Output:** T: structural SFA specification of up to n states; G: transition guard definitions

- 1:  $\mathcal{E} \leftarrow \mathsf{guard\_template}(n, DSFA, ESS).$
- 2:  $\mathcal{P}_1 \leftarrow \text{generate}_{\text{part}}(n, m, \mathcal{B}).$
- 3:  $\mathcal{P}_2 \leftarrow \mathsf{test\_part}(\mathcal{B}).$
- 4:  $\mathcal{M} \leftarrow \mathsf{solve}(t, \mathcal{E}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{I}, \mathcal{B}, \mathcal{S}).$
- 5:  $(\mathcal{T}, \mathcal{G}) \leftarrow \mathsf{assemble}(\mathcal{M}, \mathcal{E}).$
- 6: return  $(\mathcal{T}, \mathcal{G})$ .

7: function assemble( $\mathcal{M}, \mathcal{E}$ ):

- 8:  $\mathcal{T} \leftarrow \text{all transition}/3 \text{ facts in } \mathcal{M}$
- 9:  $\mathcal{G} \leftarrow \emptyset$
- 10: for each atom  $\alpha \in \mathcal{M}$  of the form  $\alpha := \operatorname{atom}(i, j, \delta)$ :
- 11:  $g_{ij} \leftarrow$  the *j*-th disjunct of guard *i*'s definition
- 12: **if** no such  $g_{ij}$  exists in  $\mathcal{G}$ :
- 13:  $\mathcal{G} \leftarrow \mathcal{G} \cup \mathsf{holds}(g_{ij}, S, T) \leftarrow \# adds empty-bodied rule$
- 14: else add  $\delta$  to the body of  $g_{ij}$
- 15: for each rule  $g_{ij} \in \mathcal{G}$
- 16: add to  $g_{ij}$ 's body its corresponding mutual exclusivity conditions specified in  $\mathcal{E}$ .
- 17: return  $(\mathcal{T}, \mathcal{G})$

(A) Example result of guard\_template(n = 3, DSFA = true, ESS = skip-till-any-match):

- (1) holds  $(g(0,0), S, T) \leftarrow seq(S)$ , time(T), not holds (g(0,1), S, T), not holds (g(0,2), S, T). (2) holds  $(g(0,1), S, T) \leftarrow$  holds (body(g(0,1), J), S, T), not holds (g(0,2), S, T). (3) holds  $(g(0,2), S, T) \leftarrow$  holds (body(g(0,2), J), S, T). (4) holds  $(g(1,0), S, T) \leftarrow$  holds (body(g(1,0), J), S, T), not holds (g(1,2), S, T). (5) holds  $(g(1,1), S, T) \leftarrow$  seq(S), time(T), not holds (g(1,0), S, T), not holds (g(1,2), S, T). (6) holds  $(g(1,2), S, T) \leftarrow$  holds (body(g(1,2), J), S, T). (7) holds  $(g(2,2), S, T) \leftarrow$  seq(S), time(T). (8)  $\leftarrow$  state(S), not transition $(S, \_, S)$ . (9) holds  $(body(I, J), S, T) \leftarrow$ 
  - guard(I), disjunct(J), seq(S), time(T), holds(F, S, T) : atom(I, J, F).

- Provides "placeholder" definitions for the guards of a fully connected graph of up to max\_number of states.
- **Defeasible:** the goal is to simplify as much as possible, keep only what's necessary to explain the input (discard entire rules or rule conditions).
- Specifies mutual exclusivity conditions for the guards, in case the target is a deterministic SFA.
- **Rule (9)** allows to "unfold" the placeholder definition of the *I*-th guard into *J* disjunctions of conjunctions of BK predicate instances.

EVANEI 🐅 📈

Algorithm 1 ASAL(n, m, t, DSFA, ESS, I, B, S)

**Input:** n: max number of states ; m: max number of alternative (disjunctive) definitions for a guard; t: solving time limit; DSFA: boolean flag for (n-)deterministic SFA; ESS: event selection strategy;  $\mathcal{I}$ : SFA interpreter;  $\mathcal{B}$ : BK predicate definitions;  $\mathcal{S}$ : labeled training set.

**Output:** T: structural SFA specification of up to n states; G: transition guard definitions

- 1:  $\mathcal{E} \leftarrow \text{guard\_template}(n, DSFA, ESS).$
- 2:  $\mathcal{P}_1 \leftarrow \text{generate}_{\text{part}}(n, m, \mathcal{B}).$
- 3:  $\mathcal{P}_2 \leftarrow \mathsf{test\_part}(\mathcal{B}).$
- 4:  $\mathcal{M} \leftarrow \mathsf{solve}(t, \mathcal{E}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{I}, \mathcal{B}, \mathcal{S}).$
- 5:  $(\mathcal{T}, \mathcal{G}) \leftarrow \mathsf{assemble}(\mathcal{M}, \mathcal{E}).$
- 6: return  $(\mathcal{T}, \mathcal{G})$ .

7: function assemble( $\mathcal{M}, \mathcal{E}$ ):

8:  $\mathcal{T} \leftarrow \text{all transition}/3 \text{ facts in } \mathcal{M}$ 

9: 
$$\mathcal{G} \leftarrow \emptyset$$

- 10: for each atom  $\alpha \in \mathcal{M}$  of the form  $\alpha := \operatorname{atom}(i, j, \delta)$ :
- 11:  $g_{ij} \leftarrow$  the *j*-th disjunct of guard *i*'s definition
- 12: **if** no such  $g_{ij}$  exists in  $\mathcal{G}$ :
- 13:  $\mathcal{G} \leftarrow \mathcal{G} \cup \mathsf{holds}(g_{ij}, S, T) \leftarrow \# adds empty-bodied rule$
- 14: else add  $\delta$  to the body of  $g_{ij}$
- 15: for each rule  $g_{ij} \in \mathcal{G}$
- 16: add to  $g_{ij}$ 's body its corresponding mutual exclusivity conditions specified in  $\mathcal{E}$ .
- 17: return  $(\mathcal{T}, \mathcal{G})$

(A) Example result of guard\_template(n = 3, DSFA = true, ESS = skip-till-any-match):

(B) Example result of generate\_part(n, m, B) for B from Table 2(iv):

 $\begin{array}{ll} \textbf{(10)} & \mathsf{state}(0..2). \, \mathsf{start}(0). \, \mathsf{accepting}(2). \, \mathsf{guard}(g(S_1,S_2)) \leftarrow \mathsf{transition}(S_1,g(S_1,S_2),S_2).\\ \textbf{(11)} & \{\mathsf{transition}(S_1,g(S_1,S_2),S_2)\} \leftarrow \mathsf{state}(S_1), \mathsf{state}(S_2).\\ \textbf{(12)} & \{\mathsf{disjunct}(1..m)\}.\\ \textbf{(13)} & \{\mathsf{atom}(I,J,\mathsf{increase}(A))\} \leftarrow \mathsf{guard}(I), \mathsf{disjunct}(J), \mathsf{attr}(A).\\ \textbf{(14)} & \{\mathsf{atom}(I,J,\mathsf{less\_than\_val}(A,V))\} \leftarrow \mathsf{guard}(I), \mathsf{disjunct}(J), \mathsf{av}(A,V).\\ \textbf{(15)} & \{\mathsf{atom}(I,J,\mathsf{less\_than\_att}(A_1,A_2))\} \leftarrow \mathsf{guard}(I), \mathsf{disjunct}(J), \mathsf{attr}(A_1), \mathsf{attr}(A_2). \end{array}$ 

Abduces atom/3 instances

EVANEI 🐅 📈

Algorithm 1 ASAL(n, m, t, DSFA, ESS, I, B, S)

**Input:** n: max number of states ; m: max number of alternative (disjunctive) definitions for a guard; t: solving time limit; DSFA: boolean flag for (n-)deterministic SFA; ESS: event selection strategy;  $\mathcal{I}$ : SFA interpreter;  $\mathcal{B}$ : BK predicate definitions;  $\mathcal{S}$ : labeled training set.

**Output:** T: structural SFA specification of up to n states; G: transition guard definitions

```
1: \mathcal{E} \leftarrow \text{guard\_template}(n, DSFA, ESS).
```

- 2:  $\mathcal{P}_1 \leftarrow \text{generate}_{\text{part}}(n, m, \mathcal{B}).$
- 3:  $\mathcal{P}_2 \leftarrow \mathsf{test\_part}(\mathcal{B}).$
- 4:  $\mathcal{M} \leftarrow \mathsf{solve}(t, \mathcal{E}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{I}, \mathcal{B}, \mathcal{S}).$
- 5:  $(\mathcal{T}, \mathcal{G}) \leftarrow \mathsf{assemble}(\mathcal{M}, \mathcal{E}).$
- 6: return  $(\mathcal{T}, \mathcal{G})$ .

7: function assemble( $\mathcal{M}, \mathcal{E}$ ):

8:  $\mathcal{T} \leftarrow \text{all transition}/3 \text{ facts in } \mathcal{M}$ 

9: 
$$\mathcal{G} \leftarrow \emptyset$$

- 10: for each atom  $\alpha \in \mathcal{M}$  of the form  $\alpha := \operatorname{atom}(i, j, \delta)$ :
- 11:  $g_{ij} \leftarrow$  the *j*-th disjunct of guard *i*'s definition
- 12: **if** no such  $g_{ij}$  exists in  $\mathcal{G}$ :
- 13:  $\mathcal{G} \leftarrow \mathcal{G} \cup \mathsf{holds}(g_{ij}, S, T) \leftarrow \# adds empty-bodied rule$
- 14: else add  $\delta$  to the body of  $g_{ij}$
- 15: for each rule  $g_{ij} \in \mathcal{G}$
- 16: add to  $g_{ij}$ 's body its corresponding mutual exclusivity conditions specified in  $\mathcal{E}$ .
- 17: return  $(\mathcal{T}, \mathcal{G})$

(A) Example result of guard\_template(n = 3, DSFA = true, ESS = skip-till-any-match):

(1) holds 
$$(g(0,0), S, T) \leftarrow seq(S)$$
, time  $(T)$ , not holds  $(g(0,1), S, T)$ , not holds  $(g(0,2), S, T)$ .  
(2) holds  $(g(0,1), S, T) \leftarrow$  holds  $(body(g(0,1), J), S, T)$ , not holds  $(g(0,2), S, T)$ .  
(3) holds  $(g(0,2), S, T) \leftarrow$  holds  $(body(g(0,2), J), S, T)$ .  
(4) holds  $(g(1,0), S, T) \leftarrow$  holds  $(body(g(1,0), J), S, T)$ , not holds  $(g(1,2), S, T)$ .  
(5) holds  $(g(1,1), S, T) \leftarrow$  seq $(S)$ , time  $(T)$ , not holds  $(g(1,0), S, T)$ , not holds  $(g(1,2), S, T)$ .  
(6) holds  $(g(1,2), S, T) \leftarrow$  holds  $(body(g(1,2), J), S, T)$ .  
(7) holds  $(g(2,2), S, T) \leftarrow$  seq $(S)$ , time  $(T)$ .  
(8)  $\leftarrow$  state  $(S)$ , not transition  $(S, -, S)$ .  
(9) holds  $(body(I, J), S, T) \leftarrow$ 

guard(I), disjunct(J), seq(S), time(T), holds(F, S, T) : atom(I, J, F).

(B) Example result of generate\_part(n, m, B) for B from Table 2(iv):

 $\begin{array}{ll} \textbf{(10)} & \mathsf{state}(0..2). \ \mathsf{start}(0). \ \mathsf{accepting}(2). \ \mathsf{guard}(g(S_1,S_2)) \leftarrow \mathsf{transition}(S_1,g(S_1,S_2),S_2).\\ \textbf{(11)} & \{\mathsf{transition}(S_1,g(S_1,S_2),S_2)\} \leftarrow \mathsf{state}(S_1), \mathsf{state}(S_2).\\ \textbf{(12)} & \{\mathsf{disjunct}(1..m)\}.\\ \textbf{(13)} & \{\mathsf{atom}(I,J,\mathsf{increase}(A))\} \leftarrow \mathsf{guard}(I), \mathsf{disjunct}(J), \mathsf{attr}(A).\\ \textbf{(14)} & \{\mathsf{atom}(I,J,\mathsf{less\_than\_val}(A,V))\} \leftarrow \mathsf{guard}(I), \mathsf{disjunct}(J), \mathsf{av}(A,V).\\ \textbf{(15)} & \{\mathsf{atom}(I,J,\mathsf{less\_than\_att}(A_1,A_2))\} \leftarrow \mathsf{guard}(I), \mathsf{disjunct}(J), \mathsf{attr}(A_1), \mathsf{attr}(A_2). \end{array}$ 

#### (C) Example result of test\_part( $\mathcal{B}$ ):

(16) :~ false\_negative(S). [1@0, S] (17) :~ false\_positive(S). [1@0, S] (18) :~ atom(I, J, F). [1@0, I, J, F] (19) :~ used\_attribute(A). [1@0, A] (20) used\_attribute(A)  $\leftarrow$  atom(\_, \_, increase(A)). (21) used\_attribute(A)  $\leftarrow$  atom(\_, \_, decrease(A)). ... rest of used\_attribute/1 definitions... (22) false\_negative(S)  $\leftarrow$  pos(S), not accepted(S).

(23) false\_positive(S)  $\leftarrow$  neg(S), accepted(S).

Guides the abduction process through (weak) constraints that are to be satisfied "as much a possible".

EVANFL&W

### Algorithm 1 ASAL(n, m, t, DSFA, ESS, I, B, S)

**Input:** n: max number of states ; m: max number of alternative (disjunctive) definitions for a guard; t: solving time limit; DSFA: boolean flag for (n-)deterministic SFA; ESS: event selection strategy;  $\mathcal{I}$ : SFA interpreter;  $\mathcal{B}$ : BK predicate definitions;  $\mathcal{S}$ : labeled training set.

**Output:** T: structural SFA specification of up to n states; G: transition guard definitions

1:  $\mathcal{E} \leftarrow \mathsf{guard\_template}(n, DSFA, ESS).$ 2:  $\mathcal{P}_1 \leftarrow \text{generate}_{\text{part}}(n, m, \mathcal{B}).$ 3:  $\mathcal{P}_2 \leftarrow \text{test part}(\mathcal{B})$ . 4:  $\mathcal{M} \leftarrow \mathsf{solve}(t, \mathcal{E}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{I}, \mathcal{B}, \mathcal{S}).$ 5:  $(\mathcal{T}, \mathcal{G}) \leftarrow \mathsf{assemble}(\mathcal{M}, \mathcal{E}).$ 6: return  $(\mathcal{T}, \mathcal{G})$ . 7: function assemble( $\mathcal{M}, \mathcal{E}$ ):  $\mathcal{T} \leftarrow \text{all transition}/3 \text{ facts in } \mathcal{M}$ 8: 9:  $\mathcal{G} \leftarrow \emptyset$ for each atom  $\alpha \in \mathcal{M}$  of the form  $\alpha := \operatorname{atom}(i, j, \delta)$ : 10:11:  $g_{ij} \leftarrow$  the *j*-th disjunct of guard *i*'s definition 12: if no such  $q_{ij}$  exists in  $\mathcal{G}$ : 13:  $\mathcal{G} \leftarrow \mathcal{G} \cup \mathsf{holds}(g_{ij}, S, T) \leftarrow$ # adds empty-bodied rule 14: else add  $\delta$  to the body of  $g_{ij}$ 15: for each rule  $g_{ij} \in \mathcal{G}$ 16: add to  $q_{ij}$ 's body its corresponding mutual exclusivity conditions specified in  $\mathcal{E}$ . 17: return  $(\mathcal{T}, \mathcal{G})$ 

Extracts solutions from the generated and compiles the guards using the template if necessary (for deterministic SFA).



 $\begin{array}{l} g(0, 0) \leftarrow \text{not } g(0, 1). \\ g(1, 1) \leftarrow \text{not } g(1, 0), \text{not } g(1, 2). \\ g(2, 2) \leftarrow \# \text{true.} \\ g(0, 1) \leftarrow \text{increase}(apopt). \\ g(1, 0) \leftarrow \text{less\_than\_val}(apopt, 700), \text{decrease}(alive), \text{not } g(1, 2). \\ g(1, 2) \leftarrow \text{less\_than\_att}(necr, alive). \\ g(1, 2) \leftarrow \text{less\_than\_val}(alive, 100), \text{increase}(apopt). \end{array}$ 

## Incremental ASAL (Scaling-Up)

### EVANFLOW

#### MCTS approach

for max\_iters do:
 Descent to best leaf SFA A
 Sample mini-batch D
 Add up to k D- optimal revisions of A as children
 Pick a child and "play" a sequence of revisions
 Evaluate on training set and propagate rewards
Return best SFA found



### • SFA revision:

- Same technique used for when learning from scratch.
- Guards definitions in defeasible form.
- Guards may be generalized (remove conditions), or specialized (add conditions).
- New guards maybe added (possibly with addition of new states to the SFA)
- Guards may be entirely removed (removing also "stranded" states)

## **Proof of Concept Results**



| 3          | Method  | Batch $F_1$ -score | MCTS $F_1$ /iterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | States | Guards      | Grounding<br>(min) | Solving<br>(min) | Total<br>(min) |
|------------|---------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------------|--------------------|------------------|----------------|
|            |         |                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10    |        |             | , ,                |                  |                |
| (A)        |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |        |             |                    |                  |                |
| Bio        | ASAL    | 0.968              | 11211121121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 4      | 5           | 1.8                | 7.2              | 7.2            |
|            | MCTS    |                    | 0.910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.962 | 4      | 7           | 0.3                | 0.2              | 3.8            |
| Maritime   | ASAL    | 0.982              | 0.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000 | 4      | 4           | 2.7                | 12.6             | 12.6           |
|            | MCTS    | 0 700              | 0.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.980 | 4      | 4           | 0.3                | 0.1              | 2.8            |
| Activities | ASAL    | 0.788              | 0740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 772 | 07     | 8           | 1.2                | 18               | 18             |
|            | IVIC IS |                    | 0.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.775 | /      | 11          | 0.1                | 0.8              | 4.0            |
| (B)        |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |        |             |                    |                  |                |
| Bio        | MCTS    |                    | 0.858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.968 | 4      | 6           | 0.4                | 0.9              | 57             |
| Maritime   | MCTS    |                    | 0.915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.985 | 5      | 6           | 0.6                | 1.2              | 7.2            |
| Activities | MCTS    |                    | 0.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.778 | 7      | 12          | 0.2                | 1.4              | 7.8            |
|            |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 40.5   | 100 ( 100 C |                    |                  | 2020-0-        |
| (C)        |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |        |             |                    |                  |                |
| Bio        | MCTS    | 0.702              | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.963 | 4      | 6           | 0.34               | 0.9              | 5.3            |
|            | RPNI    | 0.702              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 13     |             |                    |                  | 0.05           |
|            | EDSM    | 0.722              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 12     |             |                    |                  | 0.05           |
| BioLarge   | MCTS    |                    | 0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97  | 4      | 6           | 0.34               | 1.02             | 14.3           |
| 0          | RPNI    | -                  | 1.000 million (1.000 |       | _      | -           | All Constraints    |                  | 1              |
|            | EDSM    | 100 C              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -     |        | 1           | -                  |                  | -              |

 Table 4: Experimental results.

- Bio: 3-variate, seq length: 50, examples: ~ 650
- Maritime: 6-variate, seq length: 30, examples: ~ 5000
- Activities: 4-variate, seq length: 100, examples: ~ 250
- BioLarge: uni-variate, seq length: 50, examples: ~ 50K

- Comparable predictive performance for batch (ASAL) & incremental (MCTS) versions.
- MCTS scales to large datasets and outperforms classical automata learning algs.

### 23

## **Future Work**

- Paper:
  - Katzouris N. & Paliouras G., Answer Set Automata: A Learnable Pattern Specification Framework for Complex Event Recognition, ECAI 2023
- Code:
  - https://github.com/nkatzz/asal

### **Current/future work:**

- Scalability:
  - What happens if the task is hard at a mini-batch level?
  - Long sequences, n-variate input for large n...
- Expressive power:
  - Learning Register Automata for long-range, temporal relations.
     (Finished, not properly evaluated).
- Neuro-symbolic (NeSy) approaches:
  - NeSy training with given event patterns.
  - NeSy event pattern learning.

