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CEF – Example & Basic ConceptsComplex Event Recognition & Forecasting (CER/F)

● Recognition:
○ Matches of the patterns on the input.

● Forecasting:
○ Likelihood of future full pattern matches, given 

observed partial matches.
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CEF – Example & Basic ConceptsComplex Event Recognition & Forecasting (CER/F)

● Recognition:
○ Matches of the patterns on the input.

● Forecasting:
○ Likelihood of future full pattern matches, given 

observed partial matches.

Complex event patterns:
● Typically manually authored, specifying situations of 

interest.
● Using Event Specification Languages (ESLs).
● Declarative.
● Formal, compositional semantics.
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CEF – Example & Basic ConceptsComplex Event Recognition & Forecasting (CER/F)

● Recognition:
○ Matches of the patterns on the input.

● Forecasting:
○ Likelihood of future full pattern matches, given 

observed partial matches.

Complex event patterns:
● Often unknown, or change over time.
● Can we learn/revise them from data?
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CEF – Example & Basic Concepts

Domain: simulation of tumor evolution in 
response to a drug

Complex Event Pattern

Example
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CEF – Example & Basic Concepts

Domain: simulation of tumor evolution in 
response to a drug

Complex Event Pattern

Event Specification Languages & Automata

● Patterns usually express “episodes” and correspond to symbolic automata (SFA).
● SFA: transition guards are predicates, rather than symbols.
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CEF – Example & Basic Concepts

Domain: simulation of tumor evolution in 
response to a drug

Patterns of interesting 
situations

Event Specification Languages & Automata

● Patterns usually express “episodes” and correspond to symbolic automata (SFA).
● SFA: transition guards are predicates, rather than symbols.
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CEF – Example & Basic Concepts

Domain: simulation of tumor evolution in 
response to a drug

Patterns of interesting 
situations

Event Specification Languages & Automata

● Patterns usually express “episodes” and correspond to symbolic automata (SFA).
● SFA: transition guards are predicates, rather than symbols.
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CEF – Example & Basic Concepts

Complex event 
pattern learning 

Patterns of interesting 
situations

Approach to Event Pattern Learning

● Approach:
○ Learn symbolic automata that correspond to patterns in an  event 

specification language.
● Requirements:

○ Simultaneously learn the SFA structure and the guards’ definitions.
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Event Pattern Learning

Event Specification Languages Logic Programs

Answer Set Automata

Symbolic Automata ● Pattern specifications in Answer Set Programming.
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Event Pattern Learning

Event Specification Languages Logic Programs

Answer Set Automata

Symbolic Automata ● Pattern specifications in Answer Set Programming.

SFA structure

Filters definitions
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Event Pattern Learning

Event Specification Languages Logic Programs

Answer Set Automata

Symbolic Automata ● Pattern specifications in Answer Set Programming (ASP)
● Pattern matching with a CER engine equivalent to 

reasoning with an ASP solver.
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Event Pattern Learning

Event Specification Languages Logic Programs

Answer Set Automata

Symbolic Automata ● Pattern specifications in Answer Set Programming (ASP)
● Pattern matching with a CER engine equivalent to 

reasoning with an ASP solver

Correctness property

Unique stable 
model

Defined inductively on 
the structure of L

Logical representation of 
the input
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Event Pattern Learning

Event Specification Languages Logic Programs

Answer Set Automata Learning (ASAL)

Symbolic Automata ● Pattern specifications in Answer Set Programming ASP
● Executable

○ Pattern matching with a CER engine equivalent to 
reasoning with an ASP solver

● Learnable from data
○ Labeled input seqs converted into constraints (to 

be accepted/rejected)
○ Abductive learning: generate SFA to minimize 

unsat constraints and model complexity 

Learnt

Given

ASAL
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Event Pattern LearningAnswer Set Automata Learning (ASAL)
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Event Pattern LearningAnswer Set Automata Learning (ASAL)

Input data as labeled Herband Interpretations
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Event Pattern LearningAnswer Set Automata Learning (ASAL)

● Provides “placeholder” definitions for the guards of a fully connected graph 
of up to max_number  of states.

● Defeasible: the goal is to simplify as much as possible, keep only what’s 
necessary to explain the input (discard entire rules or rule conditions).  

● Specifies mutual exclusivity conditions for the guards, in case the target is a 
deterministic SFA.

● Rule (9) allows to “unfold” the placeholder definition of the I-th guard into J 
disjunctions of conjunctions of BK predicate instances. 
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Event Pattern LearningAnswer Set Automata Learning (ASAL)

Abduces  atom/3 instances  
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Event Pattern LearningAnswer Set Automata Learning (ASAL)

Guides the abduction process 
through (weak) constraints 
that are to be satisfied “as 
much a possible”. 
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Event Pattern LearningAnswer Set Automata Learning (ASAL)

Extracts solutions from the generated and compiles the guards using 
the template if necessary (for deterministic SFA). 
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Event Pattern LearningIncremental ASAL (Scaling-Up)

MCTS approach
for max_iters do: 
    Descent to best leaf SFA A
    Sample mini-batch D
    Add up to k D- optimal revisions of A as children
    Pick a child and “play” a sequence of revisions
    Evaluate on training set and propagate rewards
Return best SFA found

● SFA revision:
○ Same technique used for when learning from scratch.
○ Guards definitions in defeasible form. 
○ Guards may be generalized (remove conditions), or 

specialized (add conditions).
○ New guards maybe added (possibly with addition of new 

states to the SFA) 
○ Guards may be entirely removed (removing also “stranded” 

states)

Image from Browne, Cameron B., et al. A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in games, 2012.
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Proof of Concept ResultsProof of Concept Results

● Bio: 3-variate, seq length: 50, examples: ~ 650
● Maritime: 6-variate, seq length: 30, examples: ~ 5000
● Activities: 4-variate,  seq length: 100, examples: ~ 250
● BioLarge: uni-variate, seq length: 50, examples: ~ 50K

● Comparable predictive performance for batch (ASAL) 
& incremental (MCTS) versions.

● MCTS scales to large datasets and outperforms 
classical automata learning algs. 
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Proof of Concept ResultsFuture Work 

● Paper:
○ Katzouris N. & Paliouras G., Answer Set Automata: A Learnable Pattern Specification Framework for Complex 

Event Recognition, ECAI 2023
● Code:

○ https://github.com/nkatzz/asal

● Scalability:
○ What happens if the task is hard at a mini-batch level?
○ Long sequences, n-variate input for large n…

● Expressive power:
○ Learning Register Automata for long-range, temporal relations. 

(Finished, not properly evaluated).
● Neuro-symbolic (NeSy) approaches:

○ NeSy training with given event patterns.
○ NeSy event pattern learning.

 

Current/future work:

https://github.com/nkatzz/asal

