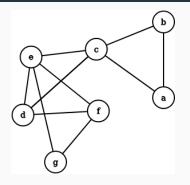
LSCPM: finding communities in Link Streams by Clique Percolation Method

Alexis BAUDIN*, Lionel TABOURIER and Clémence MAGNIEN September 25th, 2023

TIME 2023 30th International Symposium on Temporal Representation and Reasoning

1 - Communities in graphs by Clique Percolation Method (CPM)


2 - Temporal communities in link streams (LSCPM)

3 - Experiments on real datasets

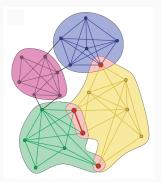
4 - Conclusion

1 - Communities in graphs by Clique Percolation Method (CPM)

> Definition – Graph

Graph formalism

- Vertices: *a*, *b*, ..., *g*
- Interactions: edges {*a*, *b*}, {*a*, *c*}, ...


Examples

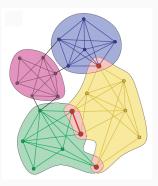
Contacts between people, link between web pages, neural activities, ...

> Communities in graphs

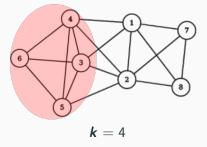
Communities: sets of vertices

- Densely connected inside
- Sparsly connected outside

Palla et al. 2005

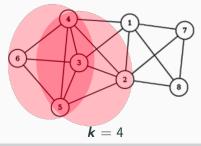

> Communities in graphs

Communities: sets of vertices


- Densely connected inside
- Sparsly connected outside

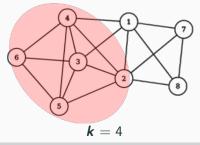
Interest:

- Locate areas of high interaction density
- Understanding the organizational structure of interactions
- Zoom in / out



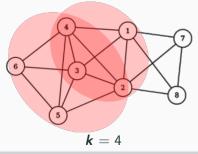
Palla et al. 2005

k-clique


Set of *k* nodes all connected to each other.

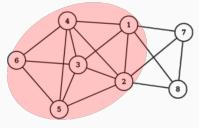
k-clique

Set of *k* nodes all connected to each other.


Grouping rule

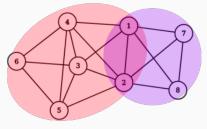
k-clique

Set of *k* nodes all connected to each other.


Grouping rule

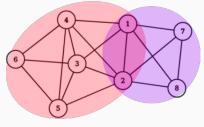
k-clique

Set of *k* nodes all connected to each other.


Grouping rule

k-clique

Set of *k* nodes all connected to each other.


Grouping rule

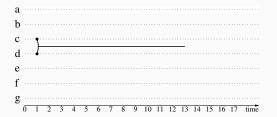
k-clique

Set of *k* nodes all connected to each other.

Grouping rule

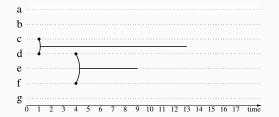
k-clique

Set of *k* nodes all connected to each other.

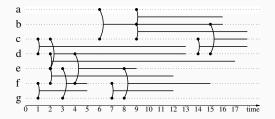

Grouping rule

Two k-cliques are adjacent if they share k - 1 nodes.

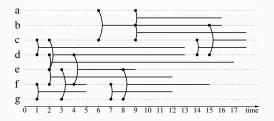
Advantages of this definition of communities:


- Local definition
- Deterministic
- Communities can overlap

2 - Temporal communities in link streams (LSCPM)


Link stream formalism

- Vertices: *a*, *b*, ..., *g*
- Time period: [0, 18]
- Interactions: temporal edges
 - *c*, *d* linked over [1, 13]


Link stream formalism

- Vertices: *a*, *b*, ..., *g*
- Time period: [0, 18]
- Interactions: temporal edges
 - c, d linked over [1, 13]
 - *d*, *f* linked over [4,9]

Link stream formalism

- Vertices: *a*, *b*, ..., *g*
- Time period: [0, 18]
- Interactions: temporal edges
 - *c*, *d* linked over [1, 13]
 - *d*, *f* linked over [4,9]
 - • •

Link stream formalism

- Vertices: *a*, *b*, ..., *g*
- Time period: [0, 18]
- Interactions: temporal edges
 - c, d linked over [1, 13]
 - *d*, *f* linked over [4,9]

Advantages

- deals directly with the stream of interactions
- no arbitrary choice of time scale
- time is continuous

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

a b c d f g0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 time

Example with k = 3:

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

a b c d e f g0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 time

Example with k = 3:

t = 1

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

а h с d. е f g Ó 10 11 12 13 14 15 16 17 time t = 2t = 1

Example with k = 3:

A. BAUDIN*, L. TABOURIER and C. MAGNIEN LSCPM: finding communities in link streams

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

а h с d. е f g Ó 10 11 12 13 14 15 16 17 time g t = 2t = 1

Example with k = 3:

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

а с е f g 10 11 12 13 14 15 16 17 time t = 1t = 2t=3

Example with k = 3:

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

а с е f g ġ 11 12 13 14 15 16 17 time t = 1t = 2t=3

Example with k = 3:

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

 $\begin{array}{c} a \\ b \\ c \\ d \\ e \\ f \\ g \\ 0 \\ 1 \\ 2 \\ 3 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 2 \\ 3 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 2 \\ 3 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 1me \\ \hline \end{array}$

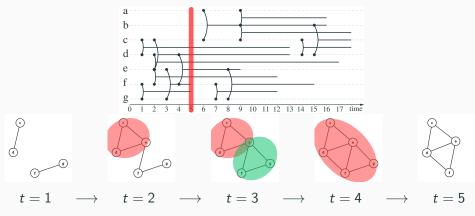
Example with k = 3:

 $t=1 \longrightarrow t=2 \longrightarrow t=3 \longrightarrow t=4$

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

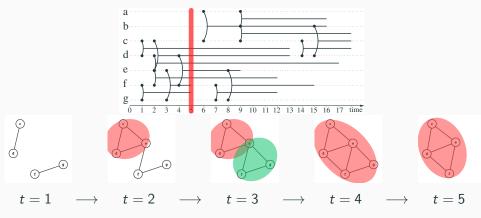
с е f g 14 16 17 time $t \equiv 1$ t = 3t = 2t = 4


Example with k = 3:

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next


Example with k = 3:

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

Example with k = 3:

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

C е f g 14 15 16 17 time

t = 3

Example with k = 3:

A. BAUDIN^{*}, L. TABOURIER and C. MAGNIEN LSCPN

t = 2

LSCPM: finding communities in link streams

t - 4

t = 5

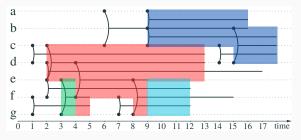
 $t \equiv 1$

CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

с e g 15 16 17 time $t \equiv 1$ t = 3t = 2t = 5t - 4

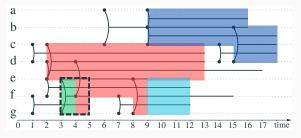
Example with k = 3:


CPM first extended to temporal graphs by Palla et al. (2007)

 \Rightarrow CPM communities that evolve from one time step to the next

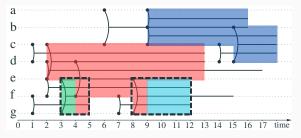
с е g 10 11 12 13 14 16 17 time $t \equiv 1$ t = 3t = 2t = 5t = 4

Example with k = 3:


Dynamic CPM communities (DCPM):

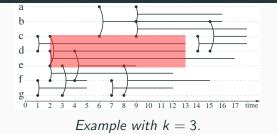
Limits of DCPM algorithm:

- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.

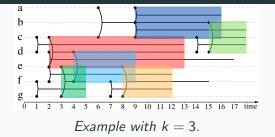

Dynamic CPM communities (DCPM):

Limits of DCPM algorithm:

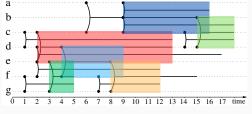
- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.


Dynamic CPM communities (DCPM):

Limits of DCPM algorithm:


- Computing communities at each time step: time consuming;
- Some temporal data expected to be grouped are not.

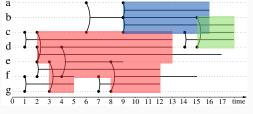
> Our algorithm: CPM in link streams (LSCPM)



k-clique in link stream k nodes all connected to each other during a time interval [t_0, t_1].

> Our algorithm: CPM in link streams (LSCPM)

k-clique in link stream k nodes all connected to each other during a time interval [t_0, t_1].



Example with k = 3.

k-clique in link stream k nodes all connected to each other during a time interval [t_0, t_1].

Grouping rule

k-cliques adjacent: they share k - 1 nodes over a time interval.

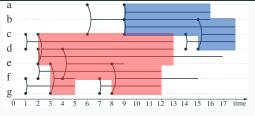


Example with k = 3.

k-clique in link stream k nodes all connected to each other during a time interval [t_0, t_1].

Grouping rule

k-cliques adjacent: they share k - 1 nodes over a time interval.



Example with k = 3.

k-clique in link stream k nodes all connected to each other during a time interval [t_0, t_1].

Grouping rule

k-cliques adjacent: they share k - 1 nodes over a time interval.

Example with k = 3.

k-clique in link stream k nodes all connected to each other during a time interval [t_0, t_1].

Grouping rule

k-cliques adjacent: they share k - 1 nodes over a time interval.

Comparing to DCPM (state of the art):

- No need to compute communities at each time step \checkmark
- All temporal cliques are grouped \checkmark

Example with k = 3.


k-clique in link stream k nodes all connected to each other during a time interval [t_0, t_1].

Grouping rule

k-cliques adjacent: they share k - 1 nodes over a time interval.

Comparing to DCPM (state of the art):

- No need to compute communities at each time step \checkmark
- All temporal cliques are grouped ✓

Example with k = 3.

k-clique in link stream k nodes all connected to each other during a time interval [t_0, t_1].

Grouping rule

k-cliques adjacent: they share k - 1 nodes over a time interval.

Comparing to DCPM (state of the art):

- No need to compute communities at each time step \checkmark
- All temporal cliques are grouped \checkmark

 \rightarrow LSCPM communities are **union** of DCPM communities

3 - Experiments on real datasets

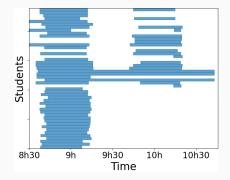
Efficiency – computation times

Link stream	# links
Households	2,136
Highschool	5,528
Infectious	44,658
Foursquare	268,472
Wikipedia	39,953,380

Efficiency – computation times

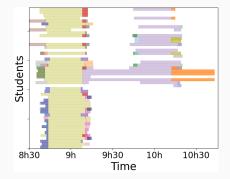
		k = 3		k = 4	
Link stream	# links	DCPM	LSCPM	DCPM	LSCPM
Households	2,136	1.5s	0.1s	1.0s	0.1s
Highschool	5,528	3.6s	0.1s	1.9s	0.1s
Infectious	44,658	10min49s	1.4s	6min12s	3.3s
Foursquare	268,472	3h01min	9.2s	2h28min	43s
Wikipedia	39,953,380	-	13min44s	-	15min29s

Efficiency – computation times


		k = 3		k = 4	
Link stream	# links	DCPM	LSCPM	DCPM	LSCPM
Households	2,136	1.5s	0.1s	1.0s	0.1s
Highschool	5,528	3.6s	0.1s	1.9s	0.1s
Infectious	44,658	10min49s	1.4s	6min12s	3.3s
Foursquare	268,472	3h01min	9.2s	2h28min	43s
Wikipedia	39,953,380	-	13min44s	-	15min29s

Consistency with metadata

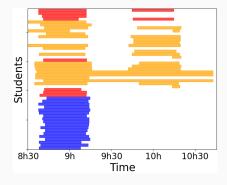
Highschool: 70% of communities are within one class, 23% within two classes, 6% within three classes, 1% within four classes.


> Example of a LSCPM community

A highschool LSCPM community

> LSCPM communities are union of DCPM communities

A highschool LSCPM community



Colors = DCPM communities.

 \rightarrow Aggregates more information over time.

> Insights on metadata

A highschool LSCPM community

Colors = classes.

 \rightarrow Interpretation with metadata.

4 - Conclusion

\rightarrow Contributions

- New definition of *k*-clique in link streams;
- New algorithm for *k*-clique enumeration;
- $\bullet\,\Rightarrow$ apply clique percolation to get temporal communities.

\rightarrow Contributions

- New definition of *k*-clique in link streams;
- New algorithm for *k*-clique enumeration;
- $\bullet\,\Rightarrow$ apply clique percolation to get temporal communities.

\rightarrow Communities obtained VS state of the art

- Faster computed;
- Better aggregated in time.

Thanks for your attention! Any questions?

Code available at: https://gitlab.lip6.fr/baudin/lscpm

Alexis Baudin - alexis.baudin@lip6.fr