
The Calculus of Temporal Influence

Florian Bruse1 Marit Kastaun2 Martin Lange1 Sören Möller1
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Bruse/Kastaun/Lange/Möller: The Calculus of Temporal Influence 2

Backstory: Digitalisation in (Secondary) Education

setting: natural science classes in secondary education

goal: learning tool that allows reasoning about experiments
• should include feedback

• allows dangerous, slow or expensive experiments to be carried out virtually
• should run on mobile devices ⇝ polynomial-time algorithms

[B./Lange/Möller CADE’23]: The Calculus of (Untimed) Influence:
• formalizes the way different variables (temperature, yeast activity, . . . ) interact
• simple proof calculus following reasoning adequate for target audience

But:
• can only ever talk about the value of a variable (e.g., speed) or its derivative (e.g.,
acceleration), but never both

• cannot formalize settings where variables influence each other (e.g., predator-prey
model)

⇝ precludes formalization of many natural phenomena

Solution: Introduce TIME
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Bruse/Kastaun/Lange/Möller: The Calculus of Temporal Influence 2

Backstory: Digitalisation in (Secondary) Education

setting: natural science classes in secondary education

goal: learning tool that allows reasoning about experiments
• should include feedback
• allows dangerous, slow or expensive experiments to be carried out virtually
• should run on mobile devices ⇝ polynomial-time algorithms
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Influence Experiments

(“signature” =) finite set of variables V = {a, b, . . .}, e.g. glucose, light, volt, . . .

study: functions of type t → a, where a is a variable, t is time

By convention:

• domain of time (t) is R≥0

• range of t → a is R for all variables

Def.: influence experiment F : (V) ⇀ (R≥0 ⇀ R)
s.t.

• dom(Fa) is a (mostly closed) interval

• Fa is continuously derivable on its domain

t

light

✓

×

t

glucose

✓

×
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Time-Value Statements and Influence Schemes

Def.: time-value statement (TVS) S : t [t1,t2],I1,I2 a where

• a is a variable

• [t1, t2], I1, I2 are intervals (bounds in Q, mostly closed), e.g. [0, 1], [−10, 10],
[42,∞], and 0 ≤ t1 ≤ t2

intuitive meaning by example:

1 “Between hours 2 and 4, light intensity is between 20% and 40%.”
⇝ t [2,4],[20,40],[20,40] light

2 “After hour 2, light intensity never drops below 10%”
⇝ t [2,∞),[10,100],[10,100] light

3 “Between hours 5 and 6, altitude starts above flight level 100 and increases to a
value above flight level 200 ” ⇝ t [5,6],[100,∞),[200,∞) altitude

Def.: influence scheme C = set of time-value statements, time-derivative statements,
and value-derivative statements
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Bruse/Kastaun/Lange/Möller: The Calculus of Temporal Influence 4

Time-Value Statements and Influence Schemes

Def.: time-value statement (TVS) S : t [t1,t2],I1,I2 a where

• a is a variable

• [t1, t2], I1, I2 are intervals (bounds in Q, mostly closed), e.g. [0, 1], [−10, 10],
[42,∞], and 0 ≤ t1 ≤ t2

intuitive meaning by example:

1 “Between hours 2 and 4, light intensity is between 20% and 40%.”
⇝ t [2,4],[20,40],[20,40] light

2 “After hour 2, light intensity never drops below 10%”
⇝ t [2,∞),[10,100],[10,100] light

3 “Between hours 5 and 6, altitude starts above flight level 100 and increases to a
value above flight level 200 ” ⇝ t [5,6],[100,∞),[200,∞) altitude

Def.: influence scheme C = set of time-value statements, time-derivative statements,
and value-derivative statements
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Semantics of Time-Value Statements

Def. interpretation of TVS S = t [x ,y ],[l ,u],[l ′,u′] a:
F |= S iff

• Fa(t) ≤ u + (u′ − u) · t−x
y−x for all t ∈ [x , y ], and

• Fa(t) ≥ l + (l ′ − l) · t−x
y−x for all t ∈ [x , y ].

special case of l = l ′, u = u′:

• l ≤ Fa(t) ≤ u for all t ∈ [x , y ].

Examples:

• F |= t [1,2],[1,3],[1,3] light

• F ̸|= t [1,2],[1,2],[2,3] light

• F |= t [4,5],[2,3],[0,2] light

• F ̸|= t [0,3],[−1,1],[−1,2] glucose

t

light

t

glucose
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Time-Derivate Statements

Fa continuously derivable on its domain ⇝ derivative Ḟa defined and continuous

Def.: time-derivative statement (TDS) S : t [t1,t2],I ȧ where

• a is a variable

• [t1, t2], I are intervals (bounds as before)

Example:

1 “Between hours 2 and 4, light intensity increases by at most 10% per hour.”
⇝ t [2,4],[0,10] ˙light

2 “Altitude never increases by more than 10 flight levels per hour”
⇝ t [0,∞),[−∞,10] ˙altitude

Def.: influence scheme C = set of time-value statements, time-derivative statements,
and value-derivative statements
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• a is a variable

• [t1, t2], I are intervals (bounds as before)

Example:

1 “Between hours 2 and 4, light intensity increases by at most 10% per hour.”
⇝ t [2,4],[0,10] ˙light

2 “Altitude never increases by more than 10 flight levels per hour”
⇝ t [0,∞),[−∞,10] ˙altitude

Def.: influence scheme C = set of time-value statements, time-derivative statements,
and value-derivative statements
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Semantics of Time-Derivative Statements

Def. interpretation of TDS S = t [x ,y ],[l ,u] ȧ:

F |= S iff l ≤ ˙Fa(t) ≤ u for all t ∈ [x , y ].

Examples:

• F |= t [1,2],[1,3] ˙light

• F ̸|= t [0,3],[0,3] ˙light

t

˙light

(informal) consequence relation between TDS and TVS:

t

light

+

t

˙light

⇝

t

light

what about the other direction?
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Bruse/Kastaun/Lange/Möller: The Calculus of Temporal Influence 7

Semantics of Time-Derivative Statements

Def. interpretation of TDS S = t [x ,y ],[l ,u] ȧ:
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Variable-Derivative Statements

Dependencies between variables and derivatives are domain-specific:

Ex.: high light intensity means high glucose production in cell respiration
⇝ influences derivative of glucose level

Def.: value-derivative statement (VDS) S : a I1,[t1,t2],I2 ḃ where

• a, b are variables

• I1, [t1, t2], I2 are intervals (bounds as before)

Example:

1 If light intensity is between 40% and 60%, then in the next hour, glucose levels
rise by 5-25 units per hour ⇝ light [40,60],[0,1],[5,25] ˙glucose

2 If light intensity is between 10% and 40%, then in the next hour, glucose levels do
not fall ⇝ light [0,10],[0,1],[0,∞] ˙glucose

Def.: influence scheme C = set of time-value statements, time-derivative statements,
and value-derivative statements
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Semantics of Variable-Derivate Statements

Def. interpretation of VDS
S = a [l ,u],t1,t2],[l ′,u′] ḃ: F |= S iff

l ′ ≤ Ḟb(t) ≤ u′ for all t s.t. there is t ′

with Fa(t
′) ∈ [l , u] and t ∈ [t + t1, t + t2]

Examples:

• F |= light [40,60],[0,1],[5,25] ˙glucose

• F ̸|= light [10,40],[0,1],[0,∞] ˙glucose

• only VDS effectively advance time

• VDR conceptually hard to grasp, given
target audience
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Bruse/Kastaun/Lange/Möller: The Calculus of Temporal Influence 9

Semantics of Variable-Derivate Statements

Def. interpretation of VDS
S = a [l ,u],t1,t2],[l ′,u′] ḃ: F |= S iff
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The Calculus of Temporal Influence

Def.: (as usual) C |= S if for all F : if F |= T for all T ∈ C then F |= S

goal: proof-theoretic characterisation, C ⊢ S iff S can be derived via . . .

(F)
S

if S ∈ C (GTDS)
t [t1,t2],I2 ȧ t [t′1,t2],I

′
2 ȧ

t [t2,t′1],[−∞,∞] ȧ
if t2 < t ′1

(VD)
t I1,I2,I3 a

t I1,[−∞,∞] ȧ
(WTDS)

t I1,I2 ȧ

t I ′1,I
′
2 ȧ

if I ′1 ⊆ I1, I2 ⊆ I ′2

(DV)
t I1,I2 ȧ

t I1,[−∞,∞] a
(JTDS)

t [t1,t2],I2 ȧ t [t2,t3],I ′2 ȧ

t [t1,t3],I2∪I3 ȧ

(Der)
t [t1,t2],I1 a a I1,[t′1,t

′
2],I2 ḃ

t [t1+t′1,t2+t′2],I2 ḃ
(STDS)

t I1,I2 ȧ t I ′1,I
′
2 ȧ

t I1∩I ′1,I2∩I ′2 ȧ

(CDL)
t [t2,t3],I1,I2 a t [t1,t2],I3 ȧ

lderivative([t1, t2], I1, I3)
(CDR)

t [t1,t2],I1,I2 a t [t2,t3],I3 ȧ

rderivative([t2, t3], I2, I3)

. . . and four analogous (but more complex) rules: (GTVS), (WTVS), (WTVS), (STVS)
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t [t1,t2],I2 ȧ t [t2,t3],I ′2 ȧ
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t I1∩I ′1,I2∩I ′2 ȧ
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The Calculus of Temporal Influence II

(GTDS)
t [t1,t2],I2 ȧ t [t′1,t2],I

′
2 ȧ

t [t2,t′1],[−∞,∞] ȧ
if t2 < t ′1

(WTDS)
t I1,I2 ȧ

t I ′1,I
′
2 ȧ

if I ′1 ⊆ I1, I2 ⊆ I ′2

(JTDS)
t [t1,t2],I2 ȧ t [t2,t3],I ′2 ȧ

t [t1,t3],I2∪I3 ȧ

(STDS)
t I1,I2 ȧ t I ′1,I

′
2 ȧ

t I1∩I ′1,I2∩I ′2 ȧ

×

t

a

t

ȧ

Rule

s

(GTDS)

, (WTVS), (JTDS) , (STDS)

not shown.
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t [t2,t′1],[−∞,∞] ȧ
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t I ′1,I
′
2 ȧ
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Bruse/Kastaun/Lange/Möller: The Calculus of Temporal Influence 11

The Calculus of Temporal Influence II

(GTDS)
t [t1,t2],I2 ȧ t [t′1,t2],I
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t [t2,t′1],[−∞,∞] ȧ
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The Calculus of Temporal Influence III

(CDL)
t [t2,t3],I1,I2 a t [t1,t2],I3 ȧ

lderivative([t1, t2], I1, I3)

(CDR)
t [t1,t2],I1,I2 a t [t2,t3],I3 ȧ

rderivative([t2, t3], I2, I3)

(Der)
t [t1,t2],I1 a a I1,[t′1,t

′
2],I2 ḃ

t [t1+t′1,t2+t′2],I2 ḃ

just as VDS, rule (Der) is clearly more complicated than
the others

t

a

t

ȧ

ḃ

[1, 3]

a

ḃ
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ḃ
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lderivative([t1, t2], I1, I3)

(CDR)
t [t1,t2],I1,I2 a t [t2,t3],I3 ȧ
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Soundness

Strong Soundness Lemma: all rules preserve logical consequence: if F |= T1 and

F |= T2 and
T1 T2

S
then F |= S

proof standard; lots of cases

rules are not invertible in general

Theorem 1 (Soundness)

If C ⊢ S then C |= S

Proof: by induction on height of derivation (standard) □

note: SSL states preservation of countermodels (from conclusion to one premise)

weaker version would suffice for Thm. 1: only preservation of existence of
countermodels needed
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A Natural Stratification of Proofs

We have soundness, what about completeness?

• need a natural notion of saturation for completeness proof

• no such notion (yet): set of derivable statements can be infinite

however: recall difficulty of rule (Der):

• problematic for intended audience, but:

• creates a natural stratification of proofs via ⊢:

Def.: Proof of C ⊢ S has (Der)-depth k (C ⊢k S) if no path from S to an axiom in its
proof tree passes more than k instances of rule (Der)

⇝ given k , enumeration of all S s.t. C ⊢k S is possible in polynomial time



Bruse/Kastaun/Lange/Möller: The Calculus of Temporal Influence 14

A Natural Stratification of Proofs

We have soundness, what about completeness?

• need a natural notion of saturation for completeness proof

• no such notion (yet): set of derivable statements can be infinite

however: recall difficulty of rule (Der):

• problematic for intended audience, but:

• creates a natural stratification of proofs via ⊢:

Def.: Proof of C ⊢ S has (Der)-depth k (C ⊢k S) if no path from S to an axiom in its
proof tree passes more than k instances of rule (Der)

⇝ given k , enumeration of all S s.t. C ⊢k S is possible in polynomial time
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Normalization

normalized scheme intuitively: all statements as tight as possible, no overlaps,
information on derivatice included

Lemma 2 (Normalization)

For every scheme C, every k ≥ 0 there is a normalized scheme C∗
K , s.t.

• for all S : C ⊢k S iff C∗
k ⊢ S using only basic∗ rules

• for all T ∈ C∗: C ⊢k T

Moreover C∗
K is computable from C in polynomial time for fixed k.

∗: namely (WTVS), (WTDS), (JTVS), (JTVS)

Ex.:

t

a

t

ȧ
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ȧ
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Summary

Theorem 3

For fixed k, it is decidable in polynomial time whether C ⊢k S .
It is semi-decidable whether C ⊢ S and, hence, whether C |= S .

Proof: Use normalization, then apply rule (Der) to obtain derivable statements for
next k

Summary:

• introduced the Calculus of Temporal Influence as a variant of the untimed
Calculus of Influence

• prototypical Python implementation available1

• Completeness of ⊢ still open - regularity conditions for saturation?

• present form not directly usable for target audience - matter of presentation

• some changes already anticipated (e.g., adding repeating patterns)

questions?

1https://github.com/SoerenMoeller/timed_influence_solver

https://github.com/SoerenMoeller/timed_influence_solver
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