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Timestamp Representation
• An interval/period timestamp

• Intervals are
 [0, 3]
 [5, 8]

• Features
 Just start and stop times
 Minimal information, smallest in terms of storage
 What is an alternative and why would anyone do it differently?
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Temporal Grouping and Aggregation
• Temporal data about football players

• How many players on each team at the same time?
 Groups vary over time
 Player belongs to potentially n^2 groups
 Special aggregation techniques for temporal aggregation

timeteamplayer
[0-5]ManUWilson

[3-8]ManUArnhelm

………
………

players 
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Sequenced Aggregation in Map/Reduce
• Interval representation is bad in Map/Reduce

• Need a new kind of timestamp
• Curtis E. Dyreson:  Using CouchDB to Compute Temporal 

Aggregates. HPCC/SmartCity/DSS 2016: 1131-1138

Log-segmented Timestamp
• Problem: can’t shard intervals
• Introduce log-segmented timestamp
• Partition timeline into pre-defined segments
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Log-segmented label for period [8, 9] is 1100

Log-segmented Example
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Log-segmented label for period [5, 5] is 10101

Log Segmented Example
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Convert Periods to Segments
• Period [2-8] is {1001, 101, 11000}

• Compact – 2log2(n) segments can represent any period
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Log-segmented Sequenced Semantics
• Sequenced semantics for relational DBs
• Curtis E. Dyreson, M. A. Manazir Ahsan: Achieving a 

Sequenced, Relational Query Language with Log-
Segmented Timestamps. TIME 2021: 14:1-14:13
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Fabio Grandi E-mail

• Fabio: Interesting idea, but what about log-segmented for 
nonsequenced queries, after all, nonsequenced is more 
important than sequenced

• Me: Yes, nonsequenced is important, but log-segmented 
timestamps don’t improve nonsequenced



Nonsequenced Semantics
• Most common temporal extension of a query language
• Nonsequenced: query has explicit temporal predicates 

and constructors
• Benefit

 Temporal can be added to any DBMS
 Layer, no DBMS modification

Example Nonsequenced Join
SELECT s.dept, OVERLAPS(r, s)
FROM tesco s, walmart r
WHERE r OVERLAPS s
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Example Nonsequenced Join
SELECT s.dept, 

GREATEST(r.time.start, s.time.start) AS start,
LEAST(r.time.stop, s.time.stop) as stop

FROM tesco s, walmart r
WHERE ((r.start <= s.start AND s.start <= r.stop)
    OR (s.start <= r.start AND r.start <= s.stop))
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Indexes
Runtime Engine

Query Execution Plan

Query Execution Plan

• Cost of query highlighted in red
• Note use of indexes highlighted in yellow
• We can lower cost of query from 30,587,076 to 1,376,011

using techniques in the paper 



Segment Columns
• Try to avoid range query on index
• Keep columns for normal timestamp
• Add columns for segments

 Note at most two segments of any given length
 Column s2 – first segment of length 2
 Column s2x – other segment of length 2
 Nulls are common in segment columns

Segment Endpoint Containment
• Precompute and store segments that contain a start or 

stop time
• Consider the interval [1, 11]
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Segment Endpoint Containment
• Precompute and store segments that contain a start or 

stop time
• Consider the interval [1, 11]
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Help Determine Endpoint Containment
Add columns for segments that could contain the start and 
stop points

 Prefix column p2 – What segment of length 2 contains start?
 Prefix column p2e – What segment of length 2 contains stop?



Using
• Is 2 contained in [1,11]?

Using
• Is 2 contained in [1,11]?

• Yes, p2 == s2

Using
• Is 2 contained in [1,11]?

• Yes, p2 == s2
• Is 2 contained in [5,6]?

Using
• Is 2 contained in [1,11]?

• Yes, p2 == s2
• Is 2 contained in [5,6]?

• No, no N such that sN == pN or sNx == pN
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Experiment Setup
• Test machine

 Oracle Cloud Instance
 4 CPUs – 2.4 GHZ
 32GB RAM
 1 TB SSD drive
 Linux

• Test DBMS
 Postgres, version 14
 Made no adjustments to out-of-the-box settings
 EXPLAIN – optimizes and generates query execution plan
 EXPLAIN ANALYZE – runs query as well  



Evaluation
• Compare timestamped vs. log-segmented
• One relation

 Timestamped

 Log-segmented

Experiment Data and Queries
• Test data

 Synthetically generated
 100 departments, 90% different names
 10K to 50K tuples
 Timeline of 2^19
 Timestamps 2^8, randomly generated

• Create indexes for everything!
• Test query

 Join of employee with itself, only on the temporal attributes
Focus on timestamps, not non-temporal columns

 Three predicates for join
u Overlaps
u Contains
u Starts

Evaluation - Overlaps Overlaps Query Execution Plan
• SQL query WHERE clause is ugly

• Query execution plan

Evaluation - Contains Disadvantages
• Starts performs worse with log-segmented

• Space cost increases (next slide)
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Conclusion
• Query optimization technique

u Log segmented stores both normal and log-segmented timestamps
u Run optimizer on both, choose best plan
u Downside is extra space
u Additional benefit – sequenced semantics!

• Tested only a small part of query optimization space

• Size of result, time-line size, value conditions, etc.
size of relations

tim
es

ta
m

p 
de

ns
ity

in
tim

e-
lin

e

��� ��� ���

��	
��

����

Future Work
• Log-segmented Cypher
• New temporal hash-join technique


