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Background

• Typically, building feasible real-world plans requires being able
to do quantitative temporal reasoning.

• Competing formalisms have different expressiveness and
computational complexity.

• Application developers have expressed the need for:
1 representing actions with uncertain durations;
2 efficient algorithms for checking whether plans with such

actions are controllable; and
3 efficient algorithms for converting such plans into a form that

enables efficient real-time execution while preserving
maximum flexibility.
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To Meet These Needs

1 Simple Temporal Networks with Uncertainty (STNUs)
2 Polynomial-time dynamic-controllability (DC) checking

algorithms
3 Polynomial-time algorithms for converting STNUs into
dispatchable form
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Simple Temporal Networks with
Uncertainty (STNUs)
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Simple Temporal Networks with Uncertainty (STNU)

An STNU is a triple (T , C,L), where:

T : A set of time-points: {X ,Y ,Z , . . .}
Real-valued variables representing events.
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Simple Temporal Networks with Uncertainty (STNU)

An STNU is a triple (T , C,L), where:

T : A set of time-points: {X ,Y ,Z , . . .}
Real-valued variables representing events.

C: A set of simple temporal constraints:
Y − X ≤ δ or Y − X ∈ [u, v ].

L: A set of contingent links: (A, x, y ,C)

◦ A: activation time-point
◦ C: contingent time-point
◦ Uncertain duration: C − A ∈ [x, y ]
◦ Executor only learns actual duration in real time.
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Graphical Form of an STNU

Each STNU S = (T , C,L) can be represented by a graph
G = (T , E , EL), where:

• Time-points serve as nodes in the graph

• Each constraint (Y − X ≤ δ) ∈ C corresponds to a labeled,

directed edge in E: X δ Y .

• Each contingent link (A, x, y ,C) ∈ L corresponds to a pair of
edges in EL that represent uncontrollable possibilities:

◦ Lower-case (LC) edge: A c:x C
◦ Upper-case (UC) edge: C C:−y A
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Sample STNU Graph
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• The black (ordinary) edges represent constraints we want to
satisfy.

• The red (upper-case) edge represents the uncontrollable
possibility that the contingent duration C − A might take on its
maximum value 10.

• The blue (lower-case) edge represents the uncontrollable
possibility that C − A might take on its minimum value 1.
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Dynamic Controllability
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Dynamic Controllability

• An STNU is dynamically controllable (DC) if there exists a
dynamic strategy for executing the non-contingent time-points
such that all constraints in C will be satisfied no matter how the
contingent durations turn out.

• A dynamic strategy can react to observations of contingent
durations in real time, but its execution decisions cannot depend
on durations that have not yet completed.

• Several DC-checking algorithms have been presented, each
based on the propagation of constraints Morris [2006, 2014];
Morris and Muscettola [2005]; Nilsson et al. [2014].

• The fastest DC-checking algorithm is due to Cairo et al. [2018].
Its worst-case time-complexity is O(mn + k2n + kn log n), where
n = |T |, m = |C|, k = |L|.
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Sample Constraint Propagation for STNUs

A

C

X
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−1

• The lower-case (LC) edge (A, c:3,C) represents the
uncontrollable possibility that C − A might take on its min value 3.

• The ordinary edge (C,−1,X ) represents a constraint to be
satisfied. (Requires X to be executed before C.)
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Sample Constraint Propagation for STNUs
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• The lower-case (LC) edge (A, c:3,C) represents the
uncontrollable possibility that C − A might take on its min value 3.

• The ordinary edge (C,−1,X ) represents a constraint to be
satisfied. (Requires X to be executed before C.)

• To guard against the possibility of C − A = 3, we must also
satisfy the generated (dashed) edge (A,2,X ).

Hunsberger & Posenato Converting STNUs into Dispatchable Form—Faster 12 / 32



Sample Constraint Propagation for STNUs

A

C

X

c:3
−1

2

• The lower-case (LC) edge (A, c:3,C) represents the
uncontrollable possibility that C − A might take on its min value 3.

• The ordinary edge (C,−1,X ) represents a constraint to be
satisfied. (Requires X to be executed before C.)

• To guard against the possibility of C − A = 3, we must also
satisfy the generated (dashed) edge (A,2,X ).

⇒ The generated edge bypasses the LC edge.
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Sample Constraint Propagation for STNUs (ctd.)

Y

C

A

4
C:−10

• Upper-case edge (C,C:−10,A) represents the uncontrollable
possibility that C − A might take on its maximum value 10.

• The ordinary edge (Y , 4,C) represents constraint to be satisified.

Hunsberger & Posenato Converting STNUs into Dispatchable Form—Faster 13 / 32



Sample Constraint Propagation for STNUs (ctd.)

Y

C

A

4
C:−10

C:−6

• Upper-case edge (C,C:−10,A) represents the uncontrollable
possibility that C − A might take on its maximum value 10.

• The ordinary edge (Y , 4,C) represents constraint to be satisified.

• To guard against the possibility of C − A = 10, we must also
satisfy the conditional (dashed) wait constraint (Y ,C:−6,A) (i.e.,
as long as C not executed, Y must wait until at least 6 after A).
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Sample Constraint Propagation for STNUs (ctd.)

Y

C

A

4
C:−10

C:−6

−3

• Upper-case edge (C,C:−10,A) represents the uncontrollable
possibility that C − A might take on its maximum value 10.

• The ordinary edge (Y , 4,C) represents constraint to be satisified.

• To guard against the possibility of C − A = 10, we must also
satisfy the conditional (dashed) wait constraint (Y ,C:−6,A) (i.e.,
as long as C not executed, Y must wait until at least 6 after A).

• Since C cannot execute before A+ 3 (where 3 is the min value of
C − A), Y must unconditionally wait 3 after A.
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Sample Constraint Propagation for STNUs (ctd.)

Y

C

A

4
C:−10

C:−6

−3

• Upper-case edge (C,C:−10,A) represents the uncontrollable
possibility that C − A might take on its maximum value 10.

• The ordinary edge (Y , 4,C) represents constraint to be satisified.
• To guard against the possibility of C − A = 10, we must also

satisfy the conditional (dashed) wait constraint (Y ,C:−6,A) (i.e.,
as long as C not executed, Y must wait until at least 6 after A).

• Since C cannot execute before A+ 3 (where 3 is the min value of
C − A), Y must unconditionally wait 3 after A.

• Both of the generated edges bypass the UC edge.
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DC-Checking Algorithms

• Morris [2006]: O(n4)-time algorithm

• Morris [2014]: O(n3)-time algorithm

• Cairo et al. [2018]: O(mn + k2n + kn log n)-time algorithm

The above algorithms differ in:

• direction of propagation (forward or backward)

• the types of edges they aim to bypass (LC, UC, or any neg edges)

• whether they need to incrementally update a potential function

• the kinds of edges they generate
(Ord+UC, only non-neg Ord, or any Ord)
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STNU Dispatchability
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Dispatchability

• The DC property only guarantees the existence of a dynamic
execution strategy. It does not provide one.

• In any case, fully representing such a strategy would typically
require exponential space.

• However, each DC STNU has an equivalent dispatchable form
that enables (the relevant portion of) an execution strategy to be
incrementally computed in real time, using only local propagation,
while preserving maximum flexibility (Morris [2014]).

• The fastest previous algorithm for converting an STNU into
dispatchable form is due to Morris [2014]. (It is a slight
modification of his O(n3)-time DC-checking algorithm.)
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A Faster Algorithm: FDSTNU

⇒ This paper presents a faster O(mn + kn2 + n2 log n)-time
algorithm, called FDSTNU, for converting an STNU into an
equivalent dispatchable form.

⇒ The new algorithm is particularly relevant for sparse graphs:

◦ If m = O(n log n) and k = O(log n)), the running time
reduces to O(n2 log n) ≪ O(n3).

◦ If m = O(n1.5) and k = O(
√
n), it reduces to

O(n2.5) ≪ O(n3).
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Background: Dispatchable STNs

• A Simple Temporal Network (STN) has no contingent links.

• STNs can be efficiently executed in real-time while requiring only
minimal computation, as follows.

◦ Maintain a time-window for each time-point.
◦ Iteratively:

∗ select a time-point to execute next;
∗ then update the time-windows of only the neighboring

time-points. (Local propagation.)
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Background: Dispatchable STNs

• A Simple Temporal Network (STN) has no contingent links.

• STNs can be efficiently executed in real-time while requiring only
minimal computation, as follows.

◦ Maintain a time-window for each time-point.
◦ Iteratively:

∗ select a time-point to execute next;
∗ then update the time-windows of only the neighboring

time-points. (Local propagation.)

• Also requires keeping track when time-points become enabled.

⇒ But not every consistent STN is dispatchable
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Converting STNs into Dispatchable Form

• Every consistent STN can be converted into an equivalent
dispatchable STN (Muscettola et al. [1998]).

• Fast dispatchability algorithm for STNs runs in O(mn + n2 log n)
time (Tsamardinos et al. [1998]).

• Characteristic feature of non-dispatchable STNs is a plus-minus
pair of edges (Morris [2016]):

U

V

W

5 −8
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Recall the LC and UC rules

Most of the constraint-propagation rules used by the DC-checking
algorithms bypass plus-minus pairs of edges!

A

C

X

c:3
−1

Y

C

A

4
C:−10
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Recall the LC and UC rules

Most of the constraint-propagation rules used by the DC-checking
algorithms bypass plus-minus pairs of edges!
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The FDSTNU Algorithm
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Details of the FDSTNU Algorithm

The FDSTNU algorithm has three phases:

Phase 1: A back-propagation phase that is a modified version of the
RUL− DC-checking algorithm of Cairo et al. [2018]
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Details of the FDSTNU Algorithm

The FDSTNU algorithm has three phases:

Phase 1: A back-propagation phase that is a modified version of the
RUL− DC-checking algorithm of Cairo et al. [2018]
⇒ Bypasses plus-minus pairs involving UC

(and possibly some LC) edges.
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Details of the FDSTNU Algorithm

The FDSTNU algorithm has three phases:

Phase 1: A back-propagation phase that is a modified version of the
RUL− DC-checking algorithm of Cairo et al. [2018]
⇒ Bypasses plus-minus pairs involving UC

(and possibly some LC) edges.

Phase 2: A forward-propagation phase that is a restricted version of
the DC-checking algorithm of Morris [2006]
⇒ Bypasses plus-minus pairs involving LC (but not UC)

edges.

Phase 3: An application of the dispatchability algorithm for STNs due
to Tsamardinos et al. [1998].
⇒ Bypasses plus-minus pairs of ordinary edges.
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Phase 1: Backward Propagation

Like RUL−, our Phase 1 propagates backward along lower-case and
ordinary edges to generate edges that bypass upper-case edges.

C W
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X
−73

−
2

c:1

C:
−

101 Unlike RUL−, our Phase 1 generates
new upper-case edges, and many
fewer ordinary edges.

Sample DC STNU
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RUL− Output Phase 1 Output
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Phase 2: Forward Propagation

Like the DC-checking algorithm of Morris [2006], our Phase 2
propagates forward to to generate edges, like (A,−6,W ) below, that
bypass lower-case edges.

C W

AY

X
−73

−
2

c:1

C:
−

10

C:− 9
−

6C:−
11

Unlike Morris’ algorithm, our Phase 2 does not propagate along
upper-case edges and, thus, does not need to iteratively update a
potential function. It also generates many fewer edges.
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Phase 3: Using STN Dispatchability Algorithm

Our Phase 3 applies the STN dispatchability algorithm of
Tsamardinos et al. [1998] to convert the subgraph of ordinary edges
into a dispatchable STN subgraph.

C W

AY

X
−73

−
2

c:1

C:
−

10

C:− 9
−

6

C:−
11

−61

1

After completing Phase 3, the resulting STNU graph is guaranteed to
be dispatchable (i.e., able to be executed efficiently in real time, using
only local propagation, while preserving maximum flexibility).
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Empirical Evaluation
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Empirical Evaluation
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Empirical Evaluation (ctd.)
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Empirical Evaluation (ctd.)
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Future Work

• Compute minimal dispatchable STNU.
• Extend dispatchability theory/algorithms to more expressive

networks (e.g., Conditional STNs and Conditional
STNUs) (Tsamardinos et al. [2003], Combi et al. [2013]).
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