
TOWARDS INFINITE-STATE
VERIFICATION AND PLANNING WITH

LINEAR TEMPORAL LOGIC MODULO THEORIES

Luca Geatti
University of Udine, Italy

Alessandro Gianola
University of Lisbon, Portugal

Nicola Gigante
Free University of Bozen-Bolzano, Italy

TIME 2023
Athens, Greece

September 25, 2023



2

Linear Temporal Logic

Linear Temporal Logic (LTL) is the most common formalism to specify
temporal properties in formal verification and artificial intelligence.

propositional modal logic interpreted over infinite or finite traces (LTLf)
studied since the ’70s [Pnu77]

many efficient reasoning techniques despite the high complexity
many mature software tools employing it



3

Limits of propositional logics

The propositional nature of LTL and similar logics limits them to finite-state systems.

However, many scenarios are difficult or impossible to abstract finitely:
systems involving arithmetics
systems involving complex and unbounded data structures
systems involving relational databases



4

LTL modulo theories

For this reason, we introduced LTL modulo theories (LTLMT) [GGG22]:

first-order extension of LTL
propositions are replaced by first-order sentences over arbitrary theories, à la SMT
(semi-)decision procedures based on off-the-shelf SMT solvers



5

LTL modulo theories

LTLMT is not the first first-order extension of LTL, however:
many first-order temporal logics have been extensively studied from theoretical
perspectives but without any practical development (see, e.g. [Kon+04])
others led to practically applicable approaches but support quite ad-hoc
syntax and semantics (see, e.g. [Cim+20])

Our approach is at the same time theoretically well-grounded, general, and practically oriented.



6

The BLACK reasoner

LTLMT is supported by our BLACK1 temporal reasoning framework:2

a software library and tool for temporal reasoning in linear-time logics
supports LTL and LTLMT in many flavors
playground for many of our research directions

1Bounded LTL sAtisfiability ChecKer
2https://www.black-sat.org

https://www.black-sat.org


7

Plan of the talk

1 LTL modulo theories

2 Verification of LTLfMT properties

3 Future directions



8

LTL MODULO THEORIES



9

Linear Temporal Logic

α U β Xα Fβ Gα



9

Linear Temporal Logic

α U β Xα Fβ Gα

β holds somewhere in the future, and α holds everywhere until then.



9

Linear Temporal Logic

α U β Xα Fβ Gα

α holds at the next state.



9

Linear Temporal Logic

α U β Xα Fβ Gα

β holds somewhere in the future (⊤ U β)



9

Linear Temporal Logic

α U β Xα Fβ Gα

α always holds from now (¬F¬α).



10

Infinite and finite traces

LTL can be interpreted over finite or infinite traces.
the infinite-trace semantics is the historically more studied [Pnu77]

the finite-trace semantics gained attention recently (LTLf) [DV13]

finite traces are algorithmically much easier to deal with
e.g., NFAs instead of Büchi automata



11

Finite traces

The finite-traces semantics is quite different. For example:
GX⊤ is not valid anymore, it is actually unsatisfiable
¬Xϕ ̸≡ X¬ϕ
GFϕ only means ϕ holds at the last state

The weak tomorrow operator is usually introduced:

X̃ϕ ≡ ¬X¬ϕ

ϕ holds at the next state, if it exists.



12

Satisfiability

Satisfiability

Is there a state sequence that satisfies a given formula ϕ?



13

Satisfiability

LTL satisfiability is a versatile problem.
entailment and validity can be reduced to satisfiability:

ϕ is valid iff ¬ϕ is unsat.
ϕ ⊃ ψ iff ϕ→ ψ is valid

model-checking can be reduced to satisfiability:

M |= ψ iff ϕM ⊃ ψ

sanity checking of specifications is a satisfiability question:
unsatisfiable specifications are buggy
valid specifications are useless

STRIPS planning can be reduced to LTL satisfiability [May+07]



14

Data-aware systems

Data-aware systems

Systems that involve the processing and manipulation of data taken from an infinite domain.

Examples:
(relational) database-driven systems
systems involving complex data-structures
systems involving arithmetics
any combination of the above!

Data-aware systems are infinite-state, leading very easily to undecidability of verification,
model-checking, satisfiability etc . . .

But they are still worth studying!



15

LTL modulo theories

LTLMT is our take at the verification of infinite-state data-aware systems.

LTLMT extends LTL by replacing propositions with first-order sentences.
symbols can be uninterpreted, or interpreted by arbitrary first-order theories

e.g., +, < interpreted as integer sum/comparison

constants, relational/function symbols, etc. can be both rigid or non-rigid
interpreted over finite-traces semantics (see later why)

so we actually talk about LTLfMT



16

Examples

G(x = 2y) (x < y) U (y = 0) G(x > 5)∧ F(x = 0)

G(∃y(x = 2y))



16

Examples

G(x = 2y) (x < y) U (y = 0) G(x > 5)∧ F(x = 0)

G(∃y(x = 2y))



16

Examples

G(x = 2y) (x < y) U (y = 0) G(x > 5)∧ F(x = 0)

G(∃y(x = 2y))



16

Examples

G(x = 2y) (x < y) U (y = 0) G(x > 5)∧ F(x = 0)

G(∃y(x = 2y))



16

Examples

G(x = 2y) (x < y) U (y = 0) G(x > 5)∧ F(x = 0)

G(∃y(x = 2y))



16

Examples

x = 0 ∧ ((⃝ x = x + 1) U x = 42)

y = 1 ∧ G(⃝∼ y = y + 1 ∧ x = 2y)

p(0)∧ G∀x(p(x) → X̃p(x + 1))∧ Fp(42)



16

Examples

x = 0 ∧ ((⃝ x = x + 1) U x = 42)

y = 1 ∧ G(⃝∼ y = y + 1 ∧ x = 2y)

p(0)∧ G∀x(p(x) → X̃p(x + 1))∧ Fp(42)



16

Examples

x = 0 ∧ ((⃝ x = x + 1) U x = 42)

y = 1 ∧ G(⃝∼ y = y + 1 ∧ x = 2y)

p(0)∧ G∀x(p(x) → X̃p(x + 1))∧ Fp(42)



16

Examples

x = 0 ∧ ((⃝ x = x + 1) U x = 42)

y = 1 ∧ G(⃝∼ y = y + 1 ∧ x = 2y)

p(0)∧ G∀x(p(x) → X̃p(x + 1))∧ Fp(42)



17

Where’s the catch?

LTLMT is clearly undecidable, but:

with finite traces semantics, and over decidable first-order theories, it is semi-decidable
so we actually talk more about LTLfMT

our semi-decision procedure always answers yes for satisfiable formulas,
may not terminate for unsatisfiable ones (but sometimes does)
decidable theories and first-order fragments abound, e.g.:

linear integer/real arithmetic (LIA/LRA)
quantifier-free equality and uninterpreted functions (QF_EUF)
arrays, fixed-size bitvectors, algebraic data types, floating-point numbers, etc.
effectively propositional (EPR) logic: ∃∗∀∗ϕ

two-variables first-order logic (FO2)



17

Where’s the catch?

LTLMT is clearly undecidable, but:

decidable fragments of LTLfMT exist (see ECAI ’23)
foundamental concept: history constraints
first-order formulas summarizing the effect of the history on the variables
a theory has finite memory if the possible history constraints are finite
(up to T -equivalence)
decidability follows

Examples:
purely relational theories
locally finite theories (e.g., modular arithmetic)
bounded lookback formulas
cosafety formulas (FX )



18

How to solve LTLf modulo theories

How do we test satisfiability of LTLfMT formulas?
an iterative procedure tests the existence of models of length up to k ⩾ 0,
for increasing values of k
given an LTLfMT formula ϕ and a k , we build a purely first-order formula ⟨ϕ⟩k
that is satisfiable if and only if there is a model for ϕ of length at most k
⟨ϕ⟩k is given to an off-the-shelf SMT solver



19

VERIFICATION OF LTLfMT PROPERTIES



20

Knowledge-base driven Dynamic Systems

Which systems can we verify LTLfMT formulas on?

Knowledge-base driven Dynamic Systems (KDS):
infinite-state transition systems

D = ⟨K, I (X ),C (X ),T (X ,X ′),F (X )⟩

states are structures over the first-order theory K (e.g., integers, reals, EUF, etc.)
I (X ), T (X ,X ′), F (X ) are arbitrary first-order formulas over the theory K

initial states satisfying I (X )
final states satisfying F (X )
transition relation expressed by T (X ,X ′)



21

Verification of KDSs

Let D be a KDS and ϕ an LTLfMT formula:
all the executions of a KDS D can be represented by an LTLfMT formula ψD

model-checking of ϕ over D reduces to satisfiability of:

γ ≡ ψD ∧ ¬ϕ

if γ is satisfiable, the specification does not hold and the model is a counterexample
if γ is unsatisfiable, the specification is valid over D



22

Some experiments

That’s cool, but does it work?
everything here is undecidable

but. . .



22

Some experiments

That’s cool, but does it work?
everything here is undecidable
but. . .



23

Some early experiments

Test setting:
simulation of a company hiring process
nondeterministic transitions:

dependent on arithmetic constraints
acting on unbounded relational data

minimal length of the counterexamples
dependent over scalable parameter N
two modelings of the same system:

P1 employs arithmetic constraints
P2 avoids arithmetics, simulates
constraints by other means

two different properties for each variant

init app eval final

xwinners++
if underr. then xunder++

3·xunder>xwinners

ϕ1
s ≡ G(xstate = final → 2xunder > xwinners)

ϕ1
ℓ ≡ G

(
xstate = app →
F (xstate = final ∧ 2xunder > xwinners)

)



23

Some early experiments

Results:
5 minutes timeout reached at N = 70
exponential growth

but could be much worse,
the problem is undecidable!

liveness property not harder than the
safety one
system with explicit arithmetics
faster to verify

0 10 20 30 40 50 60 70

1

10

100

N

T
im

e
(s

ec
on

ds
)

P1 over ϕ1
s

P1 over ϕ1
ℓ

P2 over ϕ2
s

P2 over ϕ2
ℓ



24

FUTURE DIRECTIONS



25

Data-aware planning

Automated planning languages and techniques are currently limited in expressiveness:
propositional variables
sometimes numbers
sometimes temporal constraints

What if my agent needs to reason on more complex domains?
interaction with relational databases (e.g., in a warehouse)
manipulation of data structures (lists, trees, graphs, . . . )
manipulation of ontologies



26

Data-aware planning

One can reduce planning in complex domains as LTLfMT satisfiability.
formula model → plan

One may reduce FOND planning in such domains as LTLfMT synthesis:
strategy → policy

Long term goal: a unified perspective on infinite-state verification and data-aware planning.



27

Future directions

Other future directions:
find an SMT encoding of the history constraints
find more efficient LTLfMT fragments (not necessarily decidable)
further implementation developments:

better integration with the underlying SMT solvers
general support for any backend-supported theory
(bitvectors, arrays, floating-point, ADTs, etc.)
systems modeling language

embedding of temporal description logics
reactive synthesis
is there a corresponding automaton model?



28

THANK YOU



29

REFERENCES



30

References

[Cim+20] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri, and Stefano
Tonetta. “SMT-based satisfiability of first-order LTL with event freezing functions
and metric operators.” In: Inf. Comput. 272 (2020), p. 104502. DOI: 10.1016/j.
ic.2019.104502.

[DV13] Giuseppe De Giacomo and Moshe Y. Vardi. “Linear Temporal Logic and Linear
Dynamic Logic on Finite Traces.” In: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence. Ed. by Francesca Rossi. IJCAI/AAAI, 2013,
pp. 854–860.

[GGG22] Luca Geatti, Alessandro Gianola, and Nicola Gigante. “Linear Temporal Logic
Modulo Theories over Finite Traces.” In: Proceedings of the Thirty-First Inter-
national Joint Conference on Artificial Intelligence. ijcai.org, 2022, pp. 2641–2647.
DOI: 10.24963/ijcai.2022/366.

[Kon+04] Roman Kontchakov, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev.
“Temporalising Tableaux.” In: Stud Logica 76.1 (2004), pp. 91–134. DOI: 10.
1023/B:STUD.0000027468.28935.6d.

https://doi.org/10.1016/j.ic.2019.104502
https://doi.org/10.1016/j.ic.2019.104502
https://doi.org/10.24963/ijcai.2022/366
https://doi.org/10.1023/B:STUD.0000027468.28935.6d
https://doi.org/10.1023/B:STUD.0000027468.28935.6d


31

References (2)

[May+07] Marta Cialdea Mayer, Carla Limongelli, Andrea Orlandini, and Valentina Poggioni.
“Linear temporal logic as an executable semantics for planning languages.” In:
Journal of Logic, Language and Information 16.1 (2007), pp. 63–89. DOI: 10.
1007/s10849-006-9022-1.

[Pnu77] A. Pnueli. “The Temporal Logic of Programs.” In: Proc. of the 18th Annual Sym-
posium on Foundations of Computer Science. IEEE Computer Society, 1977, pp. 46–
57. DOI: 10.1109/SFCS.1977.32.

https://doi.org/10.1007/s10849-006-9022-1
https://doi.org/10.1007/s10849-006-9022-1
https://doi.org/10.1109/SFCS.1977.32

	LTL modulo theories
	Verification of properties
	Future directions
	References

