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Menu of the day

• Starter: Formal specification
• Signal Temporal Logic (STL) 
• Spatio-Temporal Reach and Escape Logic (STREL)

• Main: Temporal Logic requirement mining
• STL classifier (supervised and semi-supervised learning)
• STREL-based clustering (unsupervised learning)

• Dessert: related and ongoing work
• Fruit Salad 
• Some heavy cake 



Formal Specification



Signal Temporal Logic (STL)

STL extends MITL by having signal predicates over real values as atomic formulas:
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dense-semantics of the Metric Interval Temporal Logic (MITL) [5] with a set
of parametrised numerical predicates playing the role of atomic proposition µ,
these are inequality of the form (g(ν1, . . . ,νn) ≥ 0), for g ∶ Rn → R. Considering
our wireless sensor network, example of atomic propositions are: vB > 0.5, i.e.
the level of the battery should be greater than 0.5, or vT < 30, i.e. the value of
temperature should be less than 30○.

The syntax of STREL is given by

Definition 8 (STREL Syntax)

ϕ ∶= true ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ϕ1 UI ϕ2 ∣ ϕ1 SI ϕ2 ∣ ϕ1Rf
d ϕ2 ∣ Ef

d ϕ

where true is the Boolean true constant, µ is an atomic predicate (AP ), negation¬ and conjunction ∧ are the standard Boolean connectives, the temporal modal-
ities are the until (UI) and the since (SI), where I is a non singular positive
real interval, while reachability (Rf

d) and the escape (Ef
d ) are the spatial opera-

tors, with f a Distance Function described in the previous section (e.g. the hops
function) and d a non singular positive real interval. Both I and d can be infinite
intervals, in case of using all R∞≥0 the interval can be omitted. In addition, we
can derive the disjunction operator (∨), the future eventually (FI) and always
(GI) operators and the past once (OI) and historically (HI). We can derive also
three other spatial operators: the somewhere, the everywhere and the surround.
Below, we describe in detail the semantics of the spatial operators, we will see
the temporal operators directly in the next Sections within the case studies, for
more detail about temporal operators of STL we refer the reader to [34,36,57].

3.1 Boolean and Quantitative Semantics

The logic presents two semantics: a Boolean semantics, (S,x, #, t) ⊧ ϕ, with the
meaning that the spatio-temporal trace x in location # at time t with spatial
model S, satisfies the formula ϕ and a quantitative semantics, ρ(ϕ,S,x, #, t),
that can be used to measure the quantitative level of satisfaction of a formula
for a given trajectory. The function ρ is also called the robustness function.
The robustness is compatible with the Boolean semantics since it satisfies the
soundness property: if ρ(ϕ,S,x, #, t) > 0 then (S,x, #, t) ⊧⊧ ϕ; if ρ(ϕ,S,x, #, t) <
0 then (S,x, #, t) /⊧ ϕ. Furthermore it satisfies also the correctness property,
which shows that x measures how robust is the satisfaction of a trajectory with
respect to perturbations. We refer the reader to [36] for more details.

Au
th

or
 P

ro
of

STL Syntax
In addition 𝐹!𝜑 ∶= ⊤ 𝑈!𝜑 𝐺!𝜑 ∶= ¬𝐹!¬𝜑

Boolean semantics: Quantitative semantics: 

[O. Maler, D. Nickovic:, Monitoring Temporal Properties of Continuous Signals. FORMAT 2004]



Monitoring STL
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Robust Monitoring
A robust STL monitor is a transducer that transform x into ��(x, .)
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Quant. sat
Bool. sat

��(x, ·)/��(x, ·)

In practice
� Trace: time words over alphabet R, linear interpolation

Input: x(·) � (ti , x(ti))i�N 0utput: ��(x, ·) � (rj , z(rj))j�N
� Continuity, and piecewise a�ne property preserved

Alexandre Donzé Robust Monitoring of STL EECS144 Fall 2013 20 / 52

SYSTEM TRAJECTORY



Monitoring STL
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Monitoring STL

' ∶ µ1 ∧  
s'(t), ⇢'(t)

µ1 ∶ xI − 80 > 0
sµ1
(t), ⇢µ1

(t)

xI (t) − 80

 ∶ F[60,90] µ2

s (t), ⇢ (t)
µ2 ∶ xR − 60 > 0
sµ2
(t), ⇢µ2

(t)

xR(t) − 60

Boolean signals
Quantitative signals

s'(0),⇢'(0) Boolean satisfaction
Quantitative satisfaction

Secondary signals
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Monitoring STL

' ∶ µ1 ∧  

µ1 ∶ xI − 80 > 0
sµ1
(t), ⇢µ1

(t)

xI (t) − 80

xI (t), xS(t), xR(t)
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sµ2
(t), ⇢µ2
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Boolean signal
Quantitative signals

Secondary signals

Primary signals

[2] O. Maler, T. Ferrére, and D. Nickovic. E�cient Robust Monitoring for STL. In Proc. CAV 2010.
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Monitoring STL

' ∶ (xI > 80) ∧F[60,90] (xR > 60)
' ∶ µ1 ∧  

µ1 ∶ xI − 80 > 0

 ∶ F[60,90] µ2

µ2 ∶ xR − 60 > 0

[2] O. Maler, T. Ferrére, and D. Nickovic. E�cient Robust Monitoring for STL. In Proc. CAV 2010.



Parametric Signal Temporal Logic (PSTL)



Spatio-Temporal Reach and Escape Logic (STREL):

STREL is extension of STL with two spatial operators: Reach and Escape
It considers a discrete space described as a weighted (direct) graph

• Somewhere, Everywhere and Surround operators can be derived from Reach and 
Escape 

[Nenzi et al , A Logic for Monitoring Dynamic Networks of Spatially-distributed Cyber-Physical Systems. LMCS, 2022]
[Nenzi et al, Monitoring spatio-temporal properties, invited tutorial., 2020]

STREL Syntax
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dense-semantics of the Metric Interval Temporal Logic (MITL) [5] with a set
of parametrised numerical predicates playing the role of atomic proposition µ,
these are inequality of the form (g(ν1, . . . ,νn) ≥ 0), for g ∶ Rn → R. Considering
our wireless sensor network, example of atomic propositions are: vB > 0.5, i.e.
the level of the battery should be greater than 0.5, or vT < 30, i.e. the value of
temperature should be less than 30○.

The syntax of STREL is given by

Definition 8 (STREL Syntax)

ϕ ∶= true ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ϕ1 UI ϕ2 ∣ ϕ1 SI ϕ2 ∣ ϕ1Rf
d ϕ2 ∣ Ef

d ϕ

where true is the Boolean true constant, µ is an atomic predicate (AP ), negation¬ and conjunction ∧ are the standard Boolean connectives, the temporal modal-
ities are the until (UI) and the since (SI), where I is a non singular positive
real interval, while reachability (Rf

d) and the escape (Ef
d ) are the spatial opera-

tors, with f a Distance Function described in the previous section (e.g. the hops
function) and d a non singular positive real interval. Both I and d can be infinite
intervals, in case of using all R∞≥0 the interval can be omitted. In addition, we
can derive the disjunction operator (∨), the future eventually (FI) and always
(GI) operators and the past once (OI) and historically (HI). We can derive also
three other spatial operators: the somewhere, the everywhere and the surround.
Below, we describe in detail the semantics of the spatial operators, we will see
the temporal operators directly in the next Sections within the case studies, for
more detail about temporal operators of STL we refer the reader to [34,36,57].

3.1 Boolean and Quantitative Semantics

The logic presents two semantics: a Boolean semantics, (S,x, #, t) ⊧ ϕ, with the
meaning that the spatio-temporal trace x in location # at time t with spatial
model S, satisfies the formula ϕ and a quantitative semantics, ρ(ϕ,S,x, #, t),
that can be used to measure the quantitative level of satisfaction of a formula
for a given trajectory. The function ρ is also called the robustness function.
The robustness is compatible with the Boolean semantics since it satisfies the
soundness property: if ρ(ϕ,S,x, #, t) > 0 then (S,x, #, t) ⊧⊧ ϕ; if ρ(ϕ,S,x, #, t) <
0 then (S,x, #, t) /⊧ ϕ. Furthermore it satisfies also the correctness property,
which shows that x measures how robust is the satisfaction of a trajectory with
respect to perturbations. We refer the reader to [36] for more details.
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Everywhere operator (□)
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Monitoring STREL

Introduction SSTL TSTL STREL

Spatio-Temporal Monitoring
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SSTL Syntax

' ∶= µ � ¬' � '1 ∧'2 � '1 U[t1,t2] '2 � �[d1,d2]' � '1 �[d1,d2] '2

In addition F[t1,t2]' ∶= U[t1,t2]', G[t1,t2]' ∶= ¬F[t1,t2]¬', �'[d1,d2] ∶= ¬�¬[d1,d2] '.



Statistical Model Checking
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TL Requirement mining



Temporal Logic requirement mining

Source: https://jdeshmukh.github.io/research.html

Logic-Cluster (unsupervised)

Logic-Classifier (semi-supervised)

Logic-Classifier (supervised)



STL Classifiers ((Semi-)Supervised Learning)

Goal: learning a specification/ classifier as a temporal logic formula to 
discriminate as much as possible between regular and anomalous behaviours. 

We want to learn both the structure and the parameters of the formula



STL Classifier: Problem Statement

Semi-supervised one-class classification prob Supervised two-class classification problem

Training data set: two sets 
• regular 𝑋!"#$%&

• anomalous 𝑋!"#$%'

Training data set: one set 
• regular 𝑋!"#$%&

We want a way to search in the space of STL formulae considering training data 𝑋!"#$%

Find the best φ that better separates the 
two sets. 

Find the “tight” φ that is satisfied by the set 



STL classifier (supervised): ROGE

• Bi-level algorithm: 
• learning formula structure via Genetic 

Programming (GP)
• learn parameters  of the formula using by 

Bayesian Optimisation

• A fitness function 𝑓 measures the quality of 
candidate solutions and depends on the kind of 
problem at hand (two-classes, one-class)

[L. Nenzi, S. Silvetti, E. Bartocci, L. Bortolussi: A Robust Genetic Algorithm for Learning Temporal Specifications from 
Data. QEST 2018]
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Mutation Operator
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STL classifier (supervised): ROGE

• Bi-level algorithm: 
• learning formula structure via Genetic 

Programming (GP)
• learn parameters  of the formula using by 

Bayesian Optimisation

• A fitness function 𝑓 measures the quality of 
candidate solutions and depends on the kind of 
problem at hand (two-classes, one-class)

[L. Nenzi, S. Silvetti, E. Bartocci, L. Bortolussi: A Robust Genetic Algorithm for Learning Temporal Specifications from 
Data. QEST 2018]



Results: Train Cruise



Results: Maritime Surveillance 
Synthetic dataset of naval surveillance of 2-dimensional coordinates traces of vessels 
behaviours. 



Limitation of ROGE

• Initial population designed ”by hand”

• The learning parameter algorithm can be slow (depending on the size 
parameter space)



STL Classifier: Context Free Grammar

[F. Pigozzi, E. Medvet, L. Nenzi. Mining Road Traffic Rules with Signal Temporal Logic and Grammar-Based Genetic Programming, Applied Sciences, 2022]
[F. Pigozzi, L. Nenzi., E. Medvet, BUSTLE: a Versatile Tool for the Evolutionary Learning of STL Specifications from Data (second revision 
on  Evolutionary Computation]



STL classifier: Building the population
• Candidate formulas are represented as derivation trees of a grammar



STL classifier: Building the population
• Candidate formulas are represented as derivation trees of a grammar



Results



STL Classifier: Fitness Function for the one-class problem

Training data set: one set 
• regular 𝑋!"#$%&

Fitness, two high level requirements:
1. Tight formulas should be preferred
2. Formulas that lead to few false anomalies should be preferred

2

1



Results



Results

Limitations:
• There may be several good classifiers
• Finding the best classifier might be unfeasible
• There may not exist a single, good classifier



A one-shot algorithm

An evolutionary algorithm that learns an ensemble of solutions in 
a single run

• Population update:
• Divide population in groups, one for each variable
• The fittest formula of each group goes to next generation (elitism)
• The remaining offspring is obtained reproducing the individuals

• Solutions update. If some individuals solve the problem (f < 𝜖), 
consider their groups:
• Remove from the population the individuals in these groups 

(extinction)
• Add them to the solutions ensemble
• Refill the population with new individuals (random immigrants)

Stop once 𝑛+#$,"+ variables have been solved 

[Patrick Indri, Alberto Bartoli, Eric Medvet, Laura Nenzi: One-Shot Learning of Ensembles of Temporal Logic Formulas for Anomaly Detection in 
Cyber-Physical Systems. EuroGP 2022: 34-50]



An online application

• For “online” anomaly detection

• using Past STL 

• a single trajectory 𝑥, with several variables (> 50)

• 𝑥 is divided as 𝑥&$#'%( , 𝑥&")&( , 𝑥&")&*

• Sensor readings are numerical variables, whilst actuator readings are ternary 
non-ordinal variables



Results



Results

• Standard GP more than 60 % of 
the formulas containing a single 
variable. 

• The one-shot algorithm 
produces a larger percentage of 
solutions with more variables, 
with some STL formulas 
containing more than 20 
variables

Comparison with classical ML: it is 
• competitive on SWaT
• it compares unfavourably on N-BaIoT, where it reaches a perfect detection rate 

only on N-BaIoT-2. However on N-BaIoT at least one anomalous instant for each 
attack is correctly identified, and all attacks might thus be considered as identified.



Learning STL-based clustering (Unsupervised Learning)

Goal: clusterizing spatio-temporal data using formal logic

[Mohammadinejad et al, Mining Interpretable Spatio-temporal Logic Properties for Spatially Distributed Systems, ATVA, 2021]



Monotonic PSTREL 𝜑(𝑝):

• The polarity of a parameter p is:
• + if it is easier to satisfy 𝜑 as we increase the value of p 
• − if it is easier to satisfy 𝜑 as we decrease the value of p

• Monotonic PSTREL:
• All parameters have either + or − polarity

• Example: □[),+]𝜑
• Polarity of d is −



• Given a location 𝑙
• A set of spatio-temporal traces 𝑋

associated with 𝑙
• The set of all valuations to 𝑝 such that 

each trace in 𝑋 satisfies the STREL 
formula
• Boundary of the validity domain: 

The robustness value with respect to at 
least one trace in 𝑋 is ≈ 0

□[(,)]𝑦 < 𝑐

𝑑

𝑐

Validity Domain of PSTREL 𝜑(𝑝)



High-level steps

• Constructing the spatial model

• Projecting each spatio-temporal trace to a 
tight valuation in the parameter space of a 
given PSTREL formula

• Clustering the trace projections throught AHC

• Learning bounding boxes for each cluster 
using a Decision Tree based approach

• Learning a STREL formula for each cluster

• Improving the interpretability of the learned 
STREL formulas cluster



COVID-19 data from LA County

PSTREL formula: ⋄ ),+ {𝐹 ),1 (𝑥 > 𝑐)}
• We fix 𝜏 to 10 days
• Small d and large c are hot spots

𝜑*+) =⋄[(,,-.#.!.] 𝐹 (,#( 𝑥 ≥ 3181 ∨ ⋄[(,#0(((] 𝐹 (,#( 𝑥 ≥ 5612



BSS data from the city of Edinburgh

PSTREL formula: 𝜑 𝜏, 𝑑 = 𝐺 ),> 𝜑?@AB 𝜏 ∨ 𝜑?@CD 𝑑
𝜑?@AB 𝜏 = 𝐹 ),1 𝐵 ≥ 1 ∧ 𝐹 ),1 (𝑆 ≥ 1),
𝜑?@CD 𝑑 =⋄ ),+ 𝐵 ≥ 1 ∧⋄ ),+ (𝑆 ≥ 1)

𝜑*+) = ¬𝐺 (," 𝜑123% 17.09 ∨ 𝜑1245 2100 ∧ ¬𝐺 (," (𝜑123% 50 ∨ 𝜑1245 1000.98 )



Traditional ML approaches

KMeans approach from 
tslearn library

Kshape approach from 
tslearn library 



Dessert
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The heavy cake: Can we learn formulae in a continuous space?

input data

typically linear 

prediction task
representation in 

ℝ!

non-linear

representation learning

Main Idea: define an embedding of STL formulae in continuous space 
implicitly by defining a kernel for STL (semantic embedding)



Very brief overview

• Using kernels-based method we can construct an embeddings

• STL kernels regression: given 𝑝(𝜓- |𝑀) for randomly chosen 
formulae 𝜓., … , 𝜓%,  we predict  𝑝(𝜑|𝑀) without knowing or 
executing the system 𝑀

• Use Kernel PCA to reduce the dimensionality of the embedded 
space

• Inverting the embedding: learn invertible encodings using 
Graph Neural Networks (GNN)

• Combine syntax and semantic based embeddings to get 
invertible mappings from formulae to real vector spaces  and 
use the framework for STL requirement mining

Accuracy of satisfiability prediction 

[Bortolussi, L., Gallo, G. M., Křetínský, J., & Nenzi, L. Learning model checking and the kernel 
trick for signal temporal logic on stochastic processes. In: TACAS, 2022]



Inverting the embedding
Problem with kernel embeddings: non-invertibility → encoding-decoding architecture

Learn invertible encodings using Graph Neural Networks (GNN): 
- Encode parse tree of the formula into the latent space 
- Decode latent vectors to syntactic trees, ideally with the same semantic meaning of the 

input formula

∧

∨ ¬

∧

𝑧𝑦

𝑦𝑥
Encoder Decoder

Formula Latent Representation 
in ℝ+

∧

∨ ¬

∧

𝑧𝑦

𝑦𝑥





Robustness function  𝜌 𝜑, 𝐱, 𝑡



Learning the Parameters 

Problem
Given a PSTL formula φ, a parameter space K, find Θ∗ that maximises the 

discrimination function 𝑓/0+(𝜑Θ)

Methodology
1. Sample {(θ(i),y(i)), i = 1,...,n}

2. Emulate (GP Regression): G[Rφ] ∼ GP(μ,k)

3. Optimize the emulation via GP-UCB algorithm, new θ(n+1) 



ACC, FPR and FNR



Results summary:

Case |𝑳| |𝑾| 𝒓𝒖𝒏𝒕𝒊𝒎𝒆(𝒔𝒆𝒄𝒔) numC |𝝋𝒄𝒍𝒖𝒔𝒕𝒆𝒓|
COVID-19 235 427 813.65 3 3. 𝜑 + 4
BSS 61 91 681.78 3 2. 𝜑 + 4
Air Quality 107 60 136.02 8 5. 𝜑 + 7
Food Court 20 35 78.24 8 3. 𝜑 + 4



Experimental Results on the stochastic models

(left) Accuracy of satisfiability 
prediction and  (right) MRE of 
robustness prediction

Immigration (1d)
Isomerization (2d)
Transcription (3d)


