An Event Calculus for Run-Time Reasoning

Periklis Mantenoglou

NCSR Demokritos, Greece
National and Kapodistrian University of Athens, Greece

> http://cer.iit.demokritos.gr/

Stream Reasoning

Stream Reasoning

https://cer.iit.demokritos.gr (maritime)

Event Calculus

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
- event (typically instantaneous).
- fluent: a property that may have different values at different points in time.

Kowalski R., Sergot M., A Logic-based Calculus of Events. New Gener. Comput. 4(1): 67-95, 1986.

Event Calculus

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
- event (typically instantaneous).
- fluent: a property that may have different values at different points in time.
- Built-in representation of inertia:
- $F=V$ holds at a particular time-point if $F=V$ has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

Kowalski R., Sergot M., A Logic-based Calculus of Events. New Gener. Comput. 4(1): 67-95, 1986.

Run-Time Event Calculus (RTEC): Fluent Specification

Simple Fluents:
initiatedAt $(F=V, T) \leftarrow$
happensAt $\left(E_{I_{1}}, T\right)[$,
conditions].
terminated $\mathbf{A t}(F=V, T) \leftarrow$
happensAt $\left(E_{T_{1}}, T\right)[$,
conditions].
where conditions:
${ }^{0-K}$ [not] happensAt $\left(E_{k}, T\right)$,
$0-M$ [not] holdsAt $\left(F_{m}=V_{m}, T\right)$,
$0-N$ atemporal-constraint ${ }_{n}$
Artikis A., Sergot M., Paliouras G., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895-908, 2015.

Run-Time Event Calculus (RTEC):

Fluent Specification

Simple Fluents:
initiatedAt $(F=V, T) \leftarrow$
happensAt $\left(E_{l_{1}}, T\right)[$, conditions].
terminated $\mathbf{A t}(F=V, T) \leftarrow$ $\operatorname{happensAt}\left(E_{T_{1}}, T\right)[$, conditions].
where conditions:
${ }^{0-K}$ [not] happensAt $\left(E_{k}, T\right)$,
$0-M$ [not] holdsAt $\left(F_{m}=V_{m}, T\right)$,
$0-N$ atemporal-constraint ${ }_{n}$

Statically Determined Fluents:
holdsFor $(F=V, I) \leftarrow$ holdsFor $\left(F_{1}=V_{1}, I_{1}\right)[$, holdsFor $\left(F_{2}=V_{2}, I_{2}\right), \ldots$ holdsFor $\left(F_{n}=V_{n}, I_{n}\right)$, intervalOperation $\left(L_{1}, I_{n+1}\right), \ldots$ intervalOperation $\left.\left(L_{m}, I\right)\right]$.
where intervalOperation:
union_all or
intersect_all or
relative_complement_all

Simple Fluent: High Speed Near Coast

initiatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$ happensAt(velocity (Vessel, Speed, _CoG, _TrueHeading), T), holdsAt (withinArea(Vessel, nearCoast) $=$ true, T), threshold $\left(v_{h s}, V\right)$, Speed $>V$.

Simple Fluent: High Speed Near Coast

initiatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$
happensAt(velocity (Vessel, Speed, _CoG, _TrueHeading), T), holdsAt (withinArea(Vessel, nearCoast) $=$ true, T), threshold $\left(v_{h s}, V\right)$, Speed $>V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$ happensAt(velocity (Vessel, Speed), T), threshold ($\left.v_{h s}, V\right)$, Speed $\leq V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$
happensAt (end (withinArea(Vessel, nearCoast) $=$ true), T).

Simple Fluent: High Speed Near Coast

initiatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$
happensAt(velocity (Vessel, Speed, _CoG, _TrueHeading), T), holdsAt $($ withinArea $($ Vessel, nearCoast $)=$ true, $T)$, threshold $\left(v_{h s}, V\right)$, Speed $>V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=$ true,$T) \leftarrow$ happensAt(velocity (Vessel, Speed), T), threshold ($\left.v_{h s}, V\right)$, Speed $\leq V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=$ true, $T) \leftarrow$
happensAt (end (withinArea(Vessel, nearCoast) = true), T).
Reasoning: holdsFor $($ highSpeed $N C($ Vessel $)=$ true, $I)$

Simple Fluent: High Speed Near Coast

initiatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$
happensAt(velocity (Vessel, Speed, _CoG, _TrueHeading), T), holdsAt $($ withinArea $($ Vessel, nearCoast $)=$ true, $T)$, threshold $\left(v_{h s}, V\right)$, Speed $>V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=$ true, $T) \leftarrow$ happensAt(velocity (Vessel, Speed), T), threshold ($\left.v_{h s}, V\right)$, Speed $\leq V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$ happensAt (end (withinArea(Vessel, nearCoast) = true), T).
Reasoning: holdsFor(highSpeedNC $($ Vessel $)=$ true, $I)$

Simple Fluent: High Speed Near Coast

initiatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$
happensAt(velocity (Vessel, Speed, _CoG, _TrueHeading), T), holdsAt $($ withinArea $($ Vessel, nearCoast $)=$ true, $T)$, threshold $\left(v_{h s}, V\right)$, Speed $>V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=$ true, $T) \leftarrow$ happensAt(velocity(Vessel, Speed), T), threshold ($\left.v_{h s}, V\right)$, Speed $\leq V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=$ true, $T) \leftarrow$ happensAt(end (withinArea(Vessel, nearCoast) = true), T).
Reasoning: holdsFor(highSpeedNC $($ Vessel $)=$ true, I)

Simple Fluent: High Speed Near Coast

initiatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$
happensAt(velocity (Vessel, Speed, _CoG, _TrueHeading), T), holdsAt $($ withinArea $($ Vessel, nearCoast $)=$ true, $T)$, threshold $\left(v_{h s}, V\right)$, Speed $>V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=$ true, $T) \leftarrow$ happensAt(velocity(Vessel, Speed), T), threshold ($\left.v_{h s}, V\right)$, Speed $\leq V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=$ true, $T) \leftarrow$ happensAt(end (withinArea(Vessel, nearCoast) = true), T).
Reasoning: holdsFor(highSpeedNC(Vessel) $=$ true, I)
highSpeedNC
velocity
withinArea

Simple Fluent: High Speed Near Coast

initiatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$
happensAt(velocity(Vessel, Speed, _CoG, _TrueHeading), T), holdsAt $($ withinArea $($ Vessel, nearCoast $)=$ true, $T)$, threshold $\left(v_{h s}, V\right)$, Speed $>V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$ happensAt(velocity (Vessel, Speed), T), threshold ($\left.v_{h s}, V\right)$, Speed $\leq V$.
terminatedAt $($ highSpeedNC $($ Vessel $)=\operatorname{true}, T) \leftarrow$ happensAt (end (withinArea(Vessel, nearCoast) $=$ true),$T)$.

Statically Determined Fluent: Anchored or Moored

holdsFor(anchoredOrMoored (Vessel) $=$ true, $I) \leftarrow$ holdsFor (stopped (Vessel) $=$ farFromPorts, $I_{s f}$), holdsFor (withinArea(Vessel, anchorage) $=$ true, $I_{\text {wa }}$), intersect_all $\left(\left[I_{s f}, I_{w a}\right], I_{s a}\right)$, holdsFor(stopped $($ Vessel $)=$ nearPorts, $\left.I_{s n}\right)$, union_all($\left.\left[I_{s a}, I_{s n}\right], I\right)$.

Statically Determined Fluent: Anchored or Moored

holdsFor(anchoredOrMoored (Vessel) $=$ true, $I) \leftarrow$ holdsFor(stopped (Vessel) $=$ farFromPorts, $I_{\text {sf }}$), holdsFor (withinArea(Vessel, anchorage) $=$ true, $I_{\text {wa }}$), intersect_all([$\left.\left.I_{s f}, I_{w a}\right], I_{s a}\right)$, holdsFor $\left(\right.$ stopped $($ Vesse $I)=$ nearPorts, $\left.I_{\text {sn }}\right)$, union_all($\left.\left[I_{s a}, I_{s n}\right], I\right)$.

Statically Determined Fluent: Anchored or Moored

holdsFor(anchoredOrMoored (Vessel) $=$ true, $I) \leftarrow$ holdsFor(stopped (Vessel) $=$ farFromPorts, $I_{\text {sf }}$), holdsFor (withinArea(Vessel, anchorage) $=$ true, $I_{\text {wa }}$), intersect_all $\left(\left[I_{s f}, I_{w a}\right], I_{s a}\right)$, holdsFor $\left(\right.$ stopped $($ Vessel $)=$ nearPorts, $\left.I_{\text {sn }}\right)$, union_all([$\left.\left[{ }_{s a}, I_{s n}\right], I\right)$.

Statically Determined Fluent: Anchored or Moored

holdsFor(anchoredOrMoored (Vessel) $=$ true, $I) \leftarrow$ holdsFor(stopped (Vessel) $=$ farFromPorts, $I_{\text {sf }}$), holdsFor (withinArea(Vessel, anchorage) $=$ true, $I_{\text {wa }}$), intersect_all([$\left.\left.I_{s f}, I_{w a}\right], I_{s a}\right)$, holdsFor $\left(\right.$ stopped $($ Vessel $)=$ nearPorts, $\left.I_{s n}\right)$, union_all([$\left.\left[{ }_{s a}, I_{s n}\right], I\right)$.

Statically Determined Fluent: Anchored or Moored

holdsFor(anchoredOrMoored (Vessel) $=$ true, $I) \leftarrow$ holdsFor (stopped (Vessel) $=$ farFromPorts, $I_{\text {sf }}$), holdsFor (withinArea(Vessel, anchorage) $=$ true, $I_{\text {wa }}$), intersect_all([$\left.\left[I_{s f}, I_{w a}\right], I_{s a}\right)$, holdsFor(stopped (Vessel) $=$ nearPorts, $\left.I_{s n}\right)$, union_all([$\left.\left[s_{s a}, I_{s n}\right], I\right)$.

Statically Determined Fluent: Anchored or Moored

holdsFor(anchoredOrMoored (Vessel) $=$ true, $I) \leftarrow$ holdsFor (stopped (Vessel) $=$ farFromPorts, $I_{\text {sf }}$), holdsFor (withinArea(Vessel, anchorage) $=$ true, $I_{\text {wa }}$), intersect_all $\left(\left[I_{s f}, I_{w a}\right], I_{s a}\right)$, holdsFor(stopped (Vessel) $=$ nearPorts, $\left.I_{s n}\right)$, union_all($\left.\left[I_{s a}, I_{s n}\right], I\right)$.

Maritime Knowledge Base

Pitsikalis E. et al., Composite Event Recognition for Maritime Monitoring. In International Conference on Distributed and Event-Based Systems (DEBS), 163-174, 2019.

Maritime Knowledge Base

Pitsikalis E. et al., Composite Event Recognition for Maritime Monitoring. In International Conference on Distributed and Event-Based Systems (DEBS), 163-174, 2019.

Maritime Knowledge Base

Pitsikalis E. et al., Composite Event Recognition for Maritime Monitoring. In International Conference on Distributed and Event-Based Systems (DEBS), 163-174, 2019.

Maritime Knowledge Base

Pitsikalis E. et al., Composite Event Recognition for Maritime Monitoring. In International Conference on Distributed and Event-Based Systems (DEBS), 163-174, 2019.

Maritime Knowledge Base

Pitsikalis E. et al., Composite Event Recognition for Maritime Monitoring. In International Conference on Distributed and Event-Based Systems (DEBS), 163-174, 2019.

Maritime Knowledge Base

Pitsikalis E. et al., Composite Event Recognition for Maritime Monitoring. In International Conference on Distributed and Event-Based Systems (DEBS), 163-174, 2019.

Maritime Knowledge Base

Semantics

An event description of RTEC is a locally stratified logic program.

Cyclic Dependencies in Temporal Specifications

Mantenoglou P., Pitsikalis E., Artikis A., Stream Reasoning with Cycles. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 544-553, 2022.

Cyclic Dependencies in Temporal Specifications

Mantenoglou P., Pitsikalis E., Artikis A., Stream Reasoning with Cycles. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 544-553, 2022.

Cyclic Dependencies in Temporal Specifications

Semantics

An event description of RTEC with cyclic dependencies is a locally stratified logic program.

Mantenoglou P., Pitsikalis E., Artikis A., Stream Reasoning with Cycles. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 544-553, 2022.

Interval Operations \& Allen Relations

Mantenoglou P., Kelesis D., Artikis A., Complex Event Recognition with Allen Relations. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 502-511, 2023.

RTEC with Allen Relations

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, $I) \leftarrow$ holdsFor (withinArea(Vessel, AreaType) = true, S), holdsFor (gap (Vessel) = farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $I)$.

[^0]
RTEC with Allen Relations

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, $I) \leftarrow$ holdsFor(withinArea(Vessel, Area Type) = true, S), holdsFor (gap (Vessel) = farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

Mantenoglou P., Kelesis D., Artikis A., Complex Event Recognition with Allen Relations. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 502-511, 2023.

RTEC with Allen Relations

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, I) \leftarrow holdsFor (withinArea(Vessel, AreaType) = true, S), holdsFor (gap (Vessel) $=$ farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

Mantenoglou P., Kelesis D., Artikis A., Complex Event Recognition with Allen Relations. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 502-511, 2023.

RTEC with Allen Relations

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, $I) \leftarrow$ holdsFor (withinArea(Vessel, Area Type) = true, S), holdsFor (gap (Vessel) = farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

Mantenoglou P., Kelesis D., Artikis A., Complex Event Recognition with Allen Relations. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 502-511, 2023.

Experimental Setup

Multi-Agent Systems: Voting \& NetBill

- Compute, e.g., normative positions of agents.

Experimental Setup

Multi-Agent Systems: Voting \& NetBill

- Compute, e.g., normative positions of agents.

Maritime Situational Awareness

- Recognise dangerous, illegal and suspicious vessel activity.

Experimental Setup

Multi-Agent Systems: Voting \& NetBill

- Compute, e.g., normative positions of agents.

Maritime Situational Awareness

- Recognise dangerous, illegal and suspicious vessel activity.

Code, Data \& Temporal Specifications
https://github.com/aartikis/RTEC
https://github.com/aartikis/RTEC/tree/allen

Experimental Results

NetBill: monitoring active quotes

$$
\rightarrow \text { RTEC } \rightarrow \mathrm{s}(\text { CASP }) \propto \text { Fusemate } \uparrow \text { Ticker } \propto \text { Logica } _ \text {jREC }
$$

Experimental Results

NetBill: monitoring active quotes
Voting: monitoring the status of motions (cycles)

$$
- \text { RTEC } \rightarrow \text { s }(\text { CASP }) _ \text {Fusemate }- \text { - Ticker } \propto \text { Logica } _ \text {jREC }
$$

Experimental Results

Monitoring maritime activities with Allen relations

Window size	Reasoning Time (ms)	Output Intervals			
Days	Input Intervals	RTEC	D^{2} IA	RTEC	D^{2} IA
1	19 K	$\mathbf{4 0}$	410	6 K	6 K
2	37 K	$\mathbf{6 5}$	592	9 K	9 K
4	74 K	$\mathbf{9 9}$	1.1 K	16 K	16 K
8	148 K	$\mathbf{1 5 6}$	1.6 K	32 K	31 K
16	297 K	$\mathbf{2 8 5}$	2.7 K	77 K	76 K

Summary \& Further Work

RTEC:

- An open-source stream reasoning framework.
- Locally stratified specifications.
- Efficient treatment of cyclic dependencies.
- Support for Allen relations in event patterns.
- Reproducible empirical evaluation on large data streams.

Summary \& Further Work

RTEC:

- An open-source stream reasoning framework.
- Locally stratified specifications.
- Efficient treatment of cyclic dependencies.
- Support for Allen relations in event patterns.
- Reproducible empirical evaluation on large data streams.

Further Work:

- Compare expressive power with event sequencing operators.
- Support events with delayed effects.

Appendix

Run-Time Event Calculus (RTEC)

Predicate

happensAt (E, T)
initiatedAt $(F=V, T)$
terminatedAt $(F=V, T)$
holdsFor $(F=V, I)$
holdsAt $(F=V, T)$
union_all($\left.\left[J_{1}, \ldots, J_{n}\right], I\right)$
intersect_all([$\left.\left.J_{1}, \ldots, J_{n}\right], I\right)$
relative_complement_all $\left(I^{\prime},\left[J_{1}, \ldots, J_{n}\right], I\right)$

Meaning

Event E occurs at time T
At time T a period of time for which $F=V$ is initiated

At time T a period of time for which $F=V$ is terminated
I is the list of the maximal intervals for which $F=V$ holds continuously

The value of fluent F is V at time T
$I=\left(J_{1} \cup \ldots \cup J_{n}\right)$
$I=\left(J_{1} \cap \ldots \cap J_{n}\right)$
$I=I^{\prime} \backslash\left(J_{1} \cup \ldots \cup J_{n}\right)$

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895-908, 2015.

Run-Time Event Calculus (RTEC)

Predicate

happensAt (E, T)
initiatedAt $(F=V, T)$
terminated $\mathbf{A t}(F=V, T)$
holdsFor $(F=V, I)$
holdsAt $(F=V, T)$
union_all($\left.\left[J_{1}, \ldots, J_{n}\right], I\right)$
intersect_all([$\left.J_{1}, \ldots, J_{n}\right]$,
relative_complement_all

Meaning

Event E occurs at time T
At time T a period of time for which $F=V$ is initiated

At time T a period of time for which $F=V$ is terminated
I is the list of the maximal intervals for which $F=V$ holds continuously

The value of fluent F is V at time T
$I=\left(J_{1} \cup \ldots \cup J_{n}\right)$
$I=\left(J_{1} \cap \ldots \cap J_{n}\right)$
$I=I^{\prime} \backslash\left(J_{1} \cup \ldots \cup J_{n}\right)$

Fluent-Value Pair Computation

Definition:
initiatedAt $(F=V, T) \leftarrow$
$\operatorname{happensAt}\left(E_{I_{1}}, T\right)$,
[conditions]
initiatedAt $(F=V, T) \leftarrow$
happensAt $\left(E_{l_{i}}, T\right)$, [conditions]
terminatedAt $(F=V, T) \leftarrow$ $\operatorname{happensAt}\left(E_{T_{1}}, T\right)$, [conditions]
happensAt $\left(E_{T_{j}}, T\right)$,
[conditions]

Reasoning:

Fluent-Value Pair Computation

Definition:
initiatedAt $(F=V, T) \leftarrow$
happensAt $\left(E_{l_{1}}, T\right)$, [conditions]
initiatedAt $(F=V, T) \leftarrow$ happensAt $\left(E_{I_{i}}, T\right)$, [conditions]
terminatedAt $(F=V, T) \leftarrow$ $\operatorname{happensAt}\left(E_{T_{1}}, T\right)$,
[conditions]
terminatedAt $(F=V, T) \leftarrow$ happensAt $\left(E_{T_{j}}, T\right)$,
[conditions]

Reasoning:

Fluent-Value Pair Computation

Definition:

```
initiatedAt}(F=V,T)
    happensAt(E}\mp@subsup{E}{\mp@subsup{|}{1}{}}{},T)
    [conditions]
```

initiatedAt $(F=V, T) \leftarrow$ happensAt $\left(E_{I_{n}}, T\right)$, [conditions]
terminatedAt $(F=V, T) \leftarrow$ happensAt $\left(E_{T_{1}}, T\right)$, [conditions] terminatedAt $(F=V, T) \leftarrow$ happensAt $\left(E_{T_{j}}, T\right)$, [conditions]

Reasoning:

Fluent-Value Pair Computation

Definition:

```
initiatedAt}(F=V,T)
    happensAt(E}\mp@subsup{E}{\mp@subsup{|}{1}{}}{},T)\mathrm{ ,
    [conditions]
```

initiatedAt $(F=V, T) \leftarrow$ happensAt $\left(E_{l n_{i}}, T\right)$, [conditions]

```
terminatedAt}(F=V,T) happensAt \(\left(E_{T_{1}}, T\right)\), [conditions]
```

terminatedAt $(F=V, T) \leftarrow$ happensAt $\left(E_{T_{j}}, T\right)$, [conditions]

Reasoning: holdsFor $(F=V, I)$

RTEC Architecture

RTEC: Windowing

RTEC: Windowing

RTEC: Windowing

Cyclic Dependencies in Temporal Specifications

initiatedAt $(\operatorname{status}(M)=$ proposed,$T) \leftarrow$ happensAt (propose $(P, M), T)$, holdsAt $(\operatorname{status}(M)=n u l l, T)$.
initiatedAt $(\operatorname{status}(M)=$ voting,$T) \leftarrow$ happensAt $(\operatorname{second}(S, M), T)$, holdsAt(status $(M)=$ proposed, $T)$. initiatedAt $(\operatorname{status}(M)=\operatorname{voted}, T) \leftarrow$ happensAt(close_ballot($C, M), T)$, holdsAt $(\operatorname{status}(M)=\operatorname{voting}, T)$.
initiatedAt $(\operatorname{status}(M)=$ null, $T) \leftarrow$
happensAt(declare($C, M, \operatorname{Res}), T)$, holdsAt $(\operatorname{status}(M)=\operatorname{voted}, T)$.

RTEC $_{A}$: Windowing

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, $I) \leftarrow$ holdsFor (withinArea(Vessel, AreaType) = true, S), holdsFor $($ gap $($ Vesse $/)=$ farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

Query time: q_{81}

RTEC $_{A}$: Windowing

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, $I) \leftarrow$ holdsFor(withinArea(Vessel, AreaType) $=$ true, \mathcal{S}), holdsFor $(\operatorname{gap}($ Vesse $/)=$ farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

Query time: q_{81}

RTEC $_{A}$: Windowing

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, I) \leftarrow holdsFor(withinArea(Vessel, AreaType) $=$ true, \mathcal{S}), holdsFor $($ gap $($ Vesse $/)=$ farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

$$
\text { Query time: } q_{81}
$$

RTEC $_{A}$: Windowing

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, $I) \leftarrow$ holdsFor(withinArea(Vessel, AreaType) = true, S), holdsFor $($ gap $($ Vesse $/)=$ farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

Query time: q_{81}

RTEC $_{A}$: Windowing

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, $I) \leftarrow$ holdsFor (withinArea(Vessel, AreaType) = true, S), holdsFor $($ gap $($ Vesse $/)=$ farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

Query time: q_{82}

RTEC $_{A}$: Windowing

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, $I) \leftarrow$ holdsFor(withinArea(Vessel, AreaType) = true, S), holdsFor $($ gap $($ Vesse $/)=$ farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

RTEC $_{A}$: Windowing

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, $I) \leftarrow$ holdsFor(withinArea(Vessel, AreaType) = true, S), holdsFor (gap (Vessel) = farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

RTEC $_{A}$: Windowing

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, $I) \leftarrow$ holdsFor(withinArea(Vessel, AreaType) = true, S), holdsFor $($ gap $($ Vesse $/)=$ farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

RTEC $_{A}$: Windowing

holdsFor(disappearedInArea(Vessel, AreaType) $=$ true, I) \leftarrow holdsFor(withinArea(Vessel, Area Type) $=$ true, \mathcal{S}), holdsFor (gap (Vessel) $=$ farFromPorts, $\mathcal{T})$, allen(meets, \mathcal{S}, \mathcal{T}, target, $/$).

RTEC $_{A}$: Correctness \& Complexity

Correctness of RTEC A

RTEC ${ }_{A}$ computes all maximal intervals of a fluent defined in terms of an Allen relation, and no other interval.

RTEC $_{A}$: Correctness \& Complexity

Correctness of RTEC A

RTEC $_{A}$ computes all maximal intervals of a fluent defined in terms of an Allen relation, and no other interval.

Complexity of RTEC A

The cost of computing the maximal intervals of a fluent defined in terms of an Allen relation is $\mathcal{O}(n)$, where n is the number of input intervals.

Interval Manipulation: Relative Complement

relative_complement_all

RTEC $_{A}$: RTEC with Allen Relations

holdsFor(suspiciousRendezVous $\left(\right.$ Vessel $_{1}$, Vessel $\left.\left._{2}\right)=\operatorname{true}, I\right) \leftarrow$ holdsFor $\left(\operatorname{gap}\left(\operatorname{Vesse}_{1}\right)=\right.$ farFromPorts, $\left.I_{g_{1}}\right)$, holdsFor $\left(\operatorname{gap}\left(\right.\right.$ Vessel $\left._{2}\right)=$ farFromPorts, $\left.\mathrm{I}_{\mathrm{g}_{2}}\right)$,
holdsFor $\left(\right.$ proximity $\left(\right.$ Vessel $_{1}$, Vessel $\left.\left._{2}\right)=\operatorname{true}, \mathcal{T}\right)$, union_all($\left.\left[I_{g_{1}}, l_{g_{2}}\right], \mathcal{S}\right)$, allen(during, \mathcal{S}, \mathcal{T}, target, $/$).

Experimental Evaluation

> Batch setting.

Win	ow size	Reasoni	Time	Outp Interva	ut Pairs
Days	Input Intervals	RTEC ${ }_{\text {A }}$	$\mathrm{D}^{2} \mathrm{I}$ A	RTEC_{A}	$\mathrm{D}^{2} \mathrm{I} A$
1	125	1	48	5K	5 K
2	250	2	164	19K	18K
4	500	4	568	72K	71K
8	1K	8	1.7K	237K	236K
16	2K	15	7.8K	878K	874K

[^0]: Mantenoglou P., Kelesis D., Artikis A., Complex Event Recognition with Allen Relations. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 502-511, 2023.

