Embarrassingly Greedy Inconsistency Resolution of Qualitative Constraint Networks

Michael Sioutis

LIRMM UMR 5506, Université de Montpellier & CNRS, France

25 September 2023

Qualitative Spatial & Temporal Reasoning

- A major field of study in KR, and Symbolic AI in general¹
- Abstracts from numerical quantities of space & time
- Grounded on *physics* and *human cognition*

Figure: Abstraction of a spatial configuration (left), temporal constraint network of three variables (right); ? denotes complete uncertainty

¹G. Ligozat.: *Qualitative Spatial and Temporal Reasoning*. ISTE Series. Wiley, 2011

Example Calculus: RCC8

Figure: The base relations of RCC8; $\cdot i$ denotes the inverse of \cdot

Example Calculus: Allen's Interval Algebra

Figure: The base relations of Interval Algebra; inverses are omitted in the figure

 Abundance of calculi dealing with trajectories, occlusion, intervals, and so on²

 Translating terminological knowledge into region spaces, e.g., document PO paper³

²F. Dylla et al.: A Survey of Qualitative Spatial and Temporal Calculi: Algebraic and Computational Properties. ACM Comput. Surv. 50 (2017)

³Z. Bouraoui et al.: *Region-Based Merging of Open-Domain Terminological Knowledge*. In: KR 2022

Applications: Drone Monitoring

Figure: "Never fly over an urban area for more than 3 minutes": $\forall r \in$ UrbanRegion, $\Box (PO \lor TPP \lor NTPP(Drone, r) \rightarrow \diamond_{[0.180s]} DC(Drone, r))^4$

⁴F. Heintz, D. de Leng: Spatio-Temporal Stream Reasoning with Incomplete Spatial Information. In: ECAI 2014

Reasons of Inconsistency

Inaccurate classifiers

- Human error
- Multi-source information

Vagueness

Noisy data

• • • •

Inconsistency Handling in Hybrid AI

Figure: Minimizing inconsistency within the Abductive Learning framework⁵

⁵Z.-H. Zhou: *Abductive learning: towards bridging machine learning and logical reasoning*. Sci. China Inf. Sci. 62 (2019)

Repairing Inconsistent Information

Figure: An inconsistent QCN and an *optimal* scenario of it, where Task A {*before*} Task C is the only relation that does not satisfy the original constraint

We solve the MAX-QCN problem,⁶ i.e., maximizing the number of satisfied constraints in a *qualitative constraint network* (QCN)

⁶J.-F. Condotta et al.: A SAT Approach for Maximizing Satisfiability in Qualitative Spatial and Temporal Constraint Networks. In: KR 2016

We use various constraint ordering strategies in a portfolio-like approach

 $\mathsf{Greedus}(\mathcal{N},\mathcal{A})$

in : A QCN $\mathcal{N} = (V, C)$ and a set \mathcal{A} of bijections $\alpha : E \to \{0, 1, \dots, |E| - 1\}$, where $E = E(G(\mathcal{N}))$ (i.e., roughly, a set of orderings of the constraints in \mathcal{N}) : A subset $p \subseteq E(G(\mathcal{N}))$ corresponding to feasible constraints in \mathcal{N} output 1 $P \leftarrow \emptyset$: foreach $\alpha \in \mathcal{A}$ do $p \leftarrow \emptyset$: 3 $\mathcal{N}' = (V, C') \leftarrow \mathcal{N}_{\top}$: 4 for *i* from 0 to $|E(G(\mathcal{N}))| - 1$ do 5 $\{u, v\} \leftarrow \alpha^{-1}(i);$ 6 $C'(u, v) \leftarrow C(u, v);$ 7 if SAT(\mathcal{N}') then 8 $| | p \leftarrow p \cup \{\{u, v\}\};$ 9 10 else $\lfloor C'(u,v) \leftarrow \mathsf{B};$ 11 $P \leftarrow P \cup \{p\};$ 12 13 return $p \in \arg \max_{p' \in P}(|p'|)$;

Some Ordering Strategies

- max: choose the constraint that has the base relation with the most local models⁷
- **sum**: choose the constraint with the highest cumulative count of local models
- weight: choose the constraint with the largest weight⁸ (the larger the weight, the more permissive the constraint)
- card: choose the constraint whose smallest decomposition into sub-relations of a (maximal) tractable subset is the largest one
- card + weight: the card heuristic, with the weight heuristic acting as tie-breaker
- **random**: choose a constraint randomly

10 / 15

 $^{^7 \}rm M.$ Sioutis et al.: Dynamic Branching in Qualitative Constraint Networks via Counting Local Models. In: TIME 2020

⁸P. van Beek, D. W. Manchak : *The design and experimental analysis of algorithms for temporal reasoning*. J. Artif. Intell. Res. 4 (1996)

Given a QCN $\mathcal{N} = (V, C)$ over some calculus \mathcal{C} we have

- the hard clauses encoding a theory of C: $Th_{\mathcal{C}}(\mathcal{N})$
- the soft clauses encoding the constraints of \mathcal{N} : $In_{\mathcal{C}}(\mathcal{N})$

Specifically, regarding $In_{\mathcal{C}}(\mathcal{N})$, we have:

$$\bigwedge_{(i,j)\in E(G(\mathcal{N})) \text{ s.t. } i < j} (r_{ij} \to \bigwedge_{l=1}^m c_l)$$

The soft part is the r_{ij} unit clauses, which correspond to constraints of \mathcal{N}

⁹M. Westphal et al.: On the Propagation Strength of SAT Encodings for Qualitative Temporal Reasoning. In: ICTAI 2013

M. Sioutis

Results

Figure: Assessing the performance of ordering strategies (and Greedus) with Interval Algebra network instances of model $A(n = 20, d, l = 6.5)^{10}$

M. Sioutis

¹⁰J. Renz, B. Nebel: *Efficient Methods for Qualitative Spatial Reasoning*. J. Artif. Intell. Res. 15 (2001)

Results

Figure: Assessing the performance of Greedus and the Partial MaxSAT encoding with Interval Algebra network instances of model A(n = 20, d, l = 6.5) (same as before)

Perspectives and Discussion

- Insight on the trade-off between obtaining repairs optimally vs fast
- Freely available source code
- Application to other inconsistency-related reasoning tasks
- Use Greedus as first bound for optimal techniques
- Explore more on the use of MaxSAT solvers (e.g., local search)
- Extend Greedus into an optimal technique (e.g., via BnB)

Thank you for your interest and attention!

http://msioutis.gitlab.io

The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise Dijkstra